Basic Combinations - Permutations and Combinations

Combinations

Each of the different groups or selections which can be made by taking some or all of a number of things at a time (irrespective of order) is called a combination.

Difference between permutations and combinations.

The process of selecting things is called combination and that of arranging things is called permutations.

For example - Suppose we have 4 objects A, B, C, and D. Then,

Selection
↓
Combination
Arrangement
↓
Permutation
ABC
ABD
ACD
BCD
ABCD, ABDC, ACBD, ACDB, ADBC, ADCB
BACD, BADC, BCAD, BCDA, BDAC, BDCA
CABD, CADB, CBAD, CBDA, CDAB, CDBA
DABC, DACB, DBAC, DBCA, DCAB, DCB
4 Combinations24 Permutations

Basic Combination Formulas

  • The number of all combinations of n distinct objects, taken r at a time is given by nCr = n!r!(nβˆ’r)!=nPrr!\frac{n!}{r!(n-r)!}\text{=}\frac{^nP_r}{r!}
  • nCr^{n}C_r + nCrβˆ’1Β =Β n+1Cr^{n}C_{r-1}\text{ = }^{n+1}C_{r}
  • if nCxΒ =Β nCyΒ then,Β nΒ =Β x+yΒ ^{n}C_x\text{ = }^nC_y\text{ then, n = x+y }

Practice Questions

Question 1. Determine n, if 2nC3^{2n}C_3 : nC2^{n}C_2 = 12 : 1

Solution:

2nC3^{2n}C_3 : nC2β‡’^{n}C_2 \Rightarrow 10 + 12 = n β‡’\Rightarrow n = 22

Now, nC5Β =Β 22C5Β =Β 22!5!(22βˆ’5)!Β =Β 22!5!(17)!Β =Β 22βˆ—21βˆ—20βˆ—19βˆ—18βˆ—17!5βˆ—4βˆ—3βˆ—2βˆ—1βˆ—17!^nC_5 \text{ = }^{22}C_5 \text{ = }\frac{22!}{5!(22-5)!} \text{ = }\frac{22!}{5!(17)!} \text{ = }\frac{22*21*20*19*18*17!}{5*4*3*2*1*17!} = 11 * 21 * 19 * 6 = 26334



Question 3. How many ways can a committee of 4 people be chosen from a group of 10 people?

Solution:

10C4=10!4!(10βˆ’4)!=10Γ—9Γ—8Γ—74Γ—3Γ—2Γ—1=210^{10}C_4 = \frac{10!}{4!(10-4)!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210



Question 4. From a deck of 52 cards, how many ways can you draw 5 cards such that all of them are hearts?

Solution:

13C5=13!5!(13βˆ’5)!=13Γ—12Γ—11Γ—10Γ—95Γ—4Γ—3Γ—2Γ—1=1287^{13}C_5 = \frac{13!}{5!(13-5)!} = \frac{13 \times 12 \times 11 \times 10 \times 9}{5 \times 4 \times 3 \times 2 \times 1} = 1287



Question 5. In how many ways can 5 different books be arranged on a shelf?

Solution:

5!=5Γ—4Γ—3Γ—2Γ—1=1205! = 5 \times 4 \times 3 \times 2 \times 1 = 120



Question 6. In an examination, a question paper consists of 10 questions. A student is required to answer any 6 questions. In how many ways can the student choose the questions?

Solution:

10C6=10!6!(10βˆ’6)!=10Γ—9Γ—8Γ—74Γ—3Γ—2Γ—1=210^{10}C_6 = \frac{10!}{6!(10-6)!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210



Question 7. How many ways can you choose 3 balls from a box containing 6 red, 4 green, and 5 blue balls?

Solution:

Total balls = 6 + 4 + 5 = 15

15C3=15!3!(15βˆ’3)!=15Γ—14Γ—133Γ—2Γ—1=455^{15}C_3 = \frac{15!}{3!(15-3)!} = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} = 455



Question 8. From 7 men and 5 women, a committee of 4 people is to be formed. In how many ways can this be done if the committee must include at least 2 women?

Solution:

We need to consider three scenarios: 2 women and 2 men, 3 women and 1 man, 4 women

Case 1: 2 women and 2 men

5C2Γ—7C2=5!2!3!Γ—7!2!5!=10Γ—21=210^5C_2 \times ^7C_2 = \frac{5!}{2!3!} \times \frac{7!}{2!5!} = 10 \times 21 = 210

Case 2: 3 women and 1 man

5C3Γ—7C1=5!3!2!Γ—7!1!6!=10Γ—7=70^5C_3 \times ^7C_1 = \frac{5!}{3!2!} \times \frac{7!}{1!6!} = 10 \times 7 = 70

Case 3: 4 women

5C4=5!4!1!=5^5C_4 = \frac{5!}{4!1!} = 5

Total number of ways:

210 + 70 + 5 = 285



Question 2. In an examination, a question paper consists of 12 questions divided into two parts I and II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can students select the questions?

Solution:

I (5 Ques.)II (7 Ques.)Combination
355C3Γ—Β 7C5^5C_3 \times \text{ } ^7C_5
445C4Γ—Β 7C4^5C_4 \times \text{ } ^7C_4
535C5Γ—Β 7C3^5C_5 \times \text{ } ^7C_3

If S is the required number of ways, then

S = 5C3Γ—Β 7C5^5C_3 \times \text{ } ^7C_5 + 5C4Γ—Β 7C4^5C_4 \times \text{ } ^7C_4 + 5C5Γ—Β 7C3^5C_5 \times \text{ } ^7C_3

= 5!3!2!Γ—7!5!2!+5!4!1!Γ—7!4!3!+5!5!0!Γ—7!3!4!\frac{5!}{3!2!} \times \frac{7!}{5!2!} + \frac{5!}{4!1!} \times \frac{7!}{4!3!} + \frac{5!}{5!0!} \times \frac{7!}{3!4!}

= 5Γ—4Γ—3!3!Γ—2Γ—1Γ—7Γ—6Γ—5!5!Γ—2Γ—1+5Γ—4!4!Γ—1Γ—7Γ—6Γ—5Γ—4!4!Γ—3Γ—2Γ—1+5!5!Γ—7Γ—6Γ—5Γ—4!3!Γ—2Γ—1Γ—4!\frac{5 \times 4 \times 3!}{3! \times 2 \times 1} \times \frac{7 \times 6 \times 5!}{5! \times 2 \times 1} + \frac{5 \times 4!}{4! \times 1} \times \frac{7 \times 6 \times 5 \times 4!}{4! \times 3 \times 2 \times 1} + \frac{5!}{5!} \times \frac{7 \times 6 \times 5 \times 4!}{3! \times 2 \times 1 \times 4!}

= (5Γ—2Γ—7Γ—3)+(5Γ—7Γ—5)+(7Γ—5)(5 \times 2 \times 7 \times 3) + (5 \times 7 \times 5) + (7 \times 5)

= 210 + 175 + 35

= 420 ways