Vectors and 3D Geometry - Cheatsheets | Last Minute Notes

Hey there! Welcome to KnowledgeKnot! Don't forget to share this with your friends and revisit often. Your support motivates us to create more content in the future. Thanks for being awesome!

Position Vector

A position vector  r\text{ }\mathbf{r} of a point P(x,y,z)\text{ }P(x, y, z) is given by: r=xi+yj+zk\text{ }\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}

Example Question

Given a point  A(3,2,5)\text{ }A(3, -2, 5), find the position vector  r\text{ }\mathbf{r} of the point.

Solution:

The coordinates of point  A\text{ }A are  (3,2,5)\text{ }(3, -2, 5). Therefore, the position vector  r\text{ }\mathbf{r} is:

 r=3i2j+5k\text{ }\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}

Magnitude of a Position Vector

The magnitude of a position vector  r\text{ }\mathbf{r} for a point  P(x,y,z)\text{ }P(x, y, z) is calculated as: r=x2+y2+z2\text{ }|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}

Example Question

Given a point  Q(2,3,4)\text{ }Q(2, -3, 4), find the magnitude of the position vector  r\text{ }\mathbf{r}.

Solution:

For point  Q\text{ }Q with coordinates  (2,3,4)\text{ }(2, -3, 4), the magnitude of  r\text{ }\mathbf{r} is:

 r=22+(3)2+42=4+9+16=29\text{ }|\mathbf{r}| = \sqrt{2^2 + (-3)^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29}

Direction Cosines

The direction cosines of a vector  r\text{ }\mathbf{r} for a point  P(x,y,z)\text{ }P(x, y, z) are given by: cosα=xr,cosβ=yr,cosγ=zr\text{ }\cos \alpha = \frac{x}{|\mathbf{r}|}, \quad \cos \beta = \frac{y}{|\mathbf{r}|}, \quad \cos \gamma = \frac{z}{|\mathbf{r}|}
They satisfy the relation: cos2α+cos2β+cos2γ=1\text{ }\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1

Example Question

Given a point  R(3,1,2)\text{ }R(3, 1, -2), calculate the direction cosines of the position vector  r\text{ }\mathbf{r}.

Solution:

For point  R\text{ }R with coordinates  (3,1,2)\text{ }(3, 1, -2), the direction cosines of  r\text{ }\mathbf{r} are:

 cosα=3r=332+12+(2)2=314\text{ }\cos \alpha = \frac{3}{|\mathbf{r}|} = \frac{3}{\sqrt{3^2 + 1^2 + (-2)^2}} = \frac{3}{\sqrt{14}}

 cosβ=1r=114\text{ }\cos \beta = \frac{1}{|\mathbf{r}|} = \frac{1}{\sqrt{14}}

 cosγ=2r=214\text{ }\cos \gamma = \frac{-2}{|\mathbf{r}|} = \frac{-2}{\sqrt{14}}

Addition of Vectors

The sum of vectors  A\text{ }\mathbf{A} and  B\text{ }\mathbf{B} is given by: A+B=(Ax+Bx)i+(Ay+By)j+(Az+Bz)k\text{ }\mathbf{A} + \mathbf{B} = (A_x + B_x)\mathbf{i} + (A_y + B_y)\mathbf{j} + (A_z + B_z)\mathbf{k}

Example Question

Given vectors  A=2i3j+4k\text{ }\mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} and  B=1i+5j2k\text{ }\mathbf{B} = -1\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, find  A+B\text{ }\mathbf{A} + \mathbf{B}.

Solution:

For vectors  A\text{ }\mathbf{A} and  B\text{ }\mathbf{B}:

 A+B=(21)i+(3+5)j+(42)k=i+2j+2k\text{ }\mathbf{A} + \mathbf{B} = (2 - 1)\mathbf{i} + (-3 + 5)\mathbf{j} + (4 - 2)\mathbf{k} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}

Subtraction of Vectors

The difference of vectors  A\text{ }\mathbf{A} and  B\text{ }\mathbf{B} is given by: AB=(AxBx)i+(AyBy)j+(AzBz)k\text{ }\mathbf{A} - \mathbf{B} = (A_x - B_x)\mathbf{i} + (A_y - B_y)\mathbf{j} + (A_z - B_z)\mathbf{k}

Example Question

Given vectors  A=2i3j+4k\text{ }\mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} and  B=1i+5j2k\text{ }\mathbf{B} = -1\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, find  AB\text{ }\mathbf{A} - \mathbf{B}.

Solution:

For vectors  A\text{ }\mathbf{A} and  B\text{ }\mathbf{B}:

 AB=(2+1)i+(35)j+(4+2)k=3i8j+6k\text{ }\mathbf{A} - \mathbf{B} = (2 + 1)\mathbf{i} + (-3 - 5)\mathbf{j} + (4 + 2)\mathbf{k} = 3\mathbf{i} - 8\mathbf{j} + 6\mathbf{k}

Multiplication by a Scalar

Multiplying vector  A\text{ }\mathbf{A} by a scalar  λ\text{ }\lambda results in: λA=λAxi+λAyj+λAzk\text{ }\lambda \mathbf{A} = \lambda A_x \mathbf{i} + \lambda A_y \mathbf{j} + \lambda A_z \mathbf{k}

Example Question

Given vector  A=3i2j+5k\text{ }\mathbf{A} = 3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}, compute  2A\text{ }2\mathbf{A}.

Solution:

For vector  A\text{ }\mathbf{A}:

 2A=2(3i2j+5k)=6i4j+10k\text{ }2\mathbf{A} = 2 \cdot (3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}) = 6\mathbf{i} - 4\mathbf{j} + 10\mathbf{k}

Unit Vector

The unit vector  A^\text{ }\hat{\mathbf{A}} of vector  A\text{ }\mathbf{A} is calculated as: A^=AA\text{ }\hat{\mathbf{A}} = \frac{\mathbf{A}}{|\mathbf{A}|}

Example Question

Given vector  B=2i+3jk\text{ }\mathbf{B} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}, find the unit vector  B^\text{ }\hat{\mathbf{B}}.

Solution:

For vector  B\text{ }\mathbf{B}:

 B=22+32+(1)2=14\text{ }|\mathbf{B}| = \sqrt{2^2 + 3^2 + (-1)^2} = \sqrt{14}

 B^=2i+3jk14\text{ }\hat{\mathbf{B}} = \frac{2\mathbf{i} + 3\mathbf{j} - \mathbf{k}}{\sqrt{14}}

Section Formula

If a point  P\text{ }P divides the line segment joining  A(x1,y1,z1)\text{ }A(x_1, y_1, z_1) and  B(x2,y2,z2)\text{ }B(x_2, y_2, z_2) in the ratio  m:n\text{ }m:n, then the coordinates of point  P\text{ }P are given by: P=(mx2+nx1m+n,my2+ny1m+n,mz2+nz1m+n)\text{ }P = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n} \right)

Example Question

Point  P\text{ }P divides the segment joining  A(1,2,3)\text{ }A(1, 2, 3) and  B(4,1,5)\text{ }B(4, -1, 5) in the ratio  2:1\text{ }2:1. Find the coordinates of point  P\text{ }P.

Solution:

For points  A(1,2,3)\text{ }A(1, 2, 3) and  B(4,1,5)\text{ }B(4, -1, 5), and ratio  2:1\text{ }2:1:

 P=(24+112+1,2(1)+122+1,25+132+1)=(8+13,2+23,10+33)=(93,0,133)=(3,0,133)\text{ }P = \left( \frac{2 \cdot 4 + 1 \cdot 1}{2+1}, \frac{2 \cdot (-1) + 1 \cdot 2}{2+1}, \frac{2 \cdot 5 + 1 \cdot 3}{2+1} \right) = \left( \frac{8 + 1}{3}, \frac{-2 + 2}{3}, \frac{10 + 3}{3} \right) = \left( \frac{9}{3}, 0, \frac{13}{3} \right) = (3, 0, \frac{13}{3})

Midpoint of a Trapezium

For trapezium  ABCD\text{ }ABCD with parallel sides AB\text{ }AB and  CD\text{ }CD, the midpoint E\text{ }E of  AB\text{ }AB:
 OE=OA+OB2\text{ }\overrightarrow{OE} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}
The line joining  E\text{ }E and  F\text{ }F is parallel to AB\text{ }AB and  CD\text{ }CD and is half of their sum:
 EF=OA+BC2\text{ }\overrightarrow{EF} = \frac{\overrightarrow{OA} + \overrightarrow{BC}}{2}

Example Question

Given trapezium  ABCD\text{ }ABCD where  O(0,0,0)\text{ }O(0, 0, 0),  A(2,3,1)\text{ }A(2, 3, 1),  B(5,1,4)\text{ }B(5, 1, 4), and  C(3,4,6)\text{ }C(3, 4, 6), find the coordinates of midpoint  E\text{ }E of side  AB\text{ }AB and the line joining  E\text{ }E and  F\text{ }F.

Solution:

For points  O(0,0,0)\text{ }O(0, 0, 0),  A(2,3,1)\text{ }A(2, 3, 1),  B(5,1,4)\text{ }B(5, 1, 4):

 E=OA+OB2=(2,3,1)+(5,1,4)2=(7,4,5)2=(3.5,2,2.5)\text{ }\overrightarrow{E} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2} = \frac{(2, 3, 1) + (5, 1, 4)}{2} = \frac{(7, 4, 5)}{2} = (3.5, 2, 2.5)

The line joining  E\text{ }E and  F\text{ }F where  F(3,4,6)\text{ }F(3, 4, 6) is:

 EF=OA+BC2=(2,3,1)+(3,4,6)2=(5,7,7)2=(2.5,3.5,3.5)\text{ }\overrightarrow{EF} = \frac{\overrightarrow{OA} + \overrightarrow{BC}}{2} = \frac{(2, 3, 1) + (3, 4, 6)}{2} = \frac{(5, 7, 7)}{2} = (2.5, 3.5, 3.5)

Scalar Product (Dot Product) of Vectors:

Given vectors  A\text{ }\overrightarrow{A} and  B\text{ }\overrightarrow{B}:
 AB=AxBx+AyBy+AzBz\text{ }\overrightarrow{A} \cdot \overrightarrow{B} = A_x \cdot B_x + A_y \cdot B_y + A_z \cdot B_z

Example Question

Find the scalar product of vectors  A=(2,3,5)\text{ }\overrightarrow{A} = (2, -3, 5) and  B=(4,1,2)\text{ }\overrightarrow{B} = (4, 1, -2).

Solution:

Given vectors  A=(2,3,5)\text{ }\overrightarrow{A} = (2, -3, 5) and  B=(4,1,2)\text{ }\overrightarrow{B} = (4, 1, -2):

 AB=24+(3)1+5(2)=8310=5\text{ }\overrightarrow{A} \cdot \overrightarrow{B} = 2 \cdot 4 + (-3) \cdot 1 + 5 \cdot (-2) = 8 - 3 - 10 = -5

Angle Between Two Vectors:

Given vectors  A\text{ }\overrightarrow{A} and  B\text{ }\overrightarrow{B}:
 cosθ=ABAB\text{ }\cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}| |\overrightarrow{B}|}

Example Question

Find the angle between vectors  A=(3,1,2)\text{ }\overrightarrow{A} = (3, -1, 2) and  B=(2,4,3)\text{ }\overrightarrow{B} = (2, 4, -3).

Solution:

Given vectors  A=(3,1,2)\text{ }\overrightarrow{A} = (3, -1, 2) and  B=(2,4,3)\text{ }\overrightarrow{B} = (2, 4, -3):

 A=32+(1)2+22=9+1+4=14\text{ }|\overrightarrow{A}| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14}

 B=22+42+(3)2=4+16+9=29\text{ }|\overrightarrow{B}| = \sqrt{2^2 + 4^2 + (-3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29}

 AB=32+(1)4+2(3)=646=4\text{ }\overrightarrow{A} \cdot \overrightarrow{B} = 3 \cdot 2 + (-1) \cdot 4 + 2 \cdot (-3) = 6 - 4 - 6 = -4

 cosθ=414290.305\text{ }\cos \theta = \frac{-4}{\sqrt{14} \cdot \sqrt{29}} \approx -0.305

 θ=cos1(0.305)108.87\text{ }\theta = \cos^{-1}(-0.305) \approx 108.87^\circ

Projection of Vector  A\text{ }\overrightarrow{A} on Vector  B\text{ }\overrightarrow{B}:

 projBA=ABB2B\text{ }\text{proj}_{\overrightarrow{B}} \overrightarrow{A} = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{B}|^2} \overrightarrow{B}

Example Question

Find the projection of vector  A=(1,2,3)\text{ }\overrightarrow{A} = (1, 2, 3) on vector  B=(2,1,4)\text{ }\overrightarrow{B} = (2, -1, 4).

Solution:

Given vectors  A=(1,2,3)\text{ }\overrightarrow{A} = (1, 2, 3) and  B=(2,1,4)\text{ }\overrightarrow{B} = (2, -1, 4):

 B=22+(1)2+42=4+1+16=21\text{ }|\overrightarrow{B}| = \sqrt{2^2 + (-1)^2 + 4^2} = \sqrt{4 + 1 + 16} = \sqrt{21}

 AB=12+2(1)+34=22+12=12\text{ }\overrightarrow{A} \cdot \overrightarrow{B} = 1 \cdot 2 + 2 \cdot (-1) + 3 \cdot 4 = 2 - 2 + 12 = 12

 projBA=1221(2,1,4)=(2421,1221,4821)=(87,47,167)\text{ }\text{proj}_{\overrightarrow{B}} \overrightarrow{A} = \frac{12}{21} \cdot (2, -1, 4) = \left( \frac{24}{21}, \frac{-12}{21}, \frac{48}{21} \right) = \left( \frac{8}{7}, -\frac{4}{7}, \frac{16}{7} \right)

Vector Product (Cross Product) of Vectors:

Given vectors  A\text{ }\overrightarrow{A} and  B\text{ }\overrightarrow{B}:
 A×B=(AyBzAzBy,AzBxAxBz,AxByAyBx)\text{ }\overrightarrow{A} \times \overrightarrow{B} = (A_y B_z - A_z B_y, A_z B_x - A_x B_z, A_x B_y - A_y B_x)

Example Question

Find the vector product of vectors  A=(1,2,1)\text{ }\overrightarrow{A} = (1, 2, -1) and  B=(3,2,4)\text{ }\overrightarrow{B} = (3, -2, 4).

Solution:

Given vectors  A=(1,2,1)\text{ }\overrightarrow{A} = (1, 2, -1) and  B=(3,2,4)\text{ }\overrightarrow{B} = (3, -2, 4):

 A=12+22+(1)2=1+4+1=6\text{ }|\overrightarrow{A}| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}

 B=32+(2)2+42=9+4+16=29\text{ }|\overrightarrow{B}| = \sqrt{3^2 + (-2)^2 + 4^2} = \sqrt{9 + 4 + 16} = \sqrt{29}

Calculate the components of the cross product:

 A×B=(24(1)(2),(1)314,1(2)23)\text{ }\overrightarrow{A} \times \overrightarrow{B} = \left( 2 \cdot 4 - (-1) \cdot (-2), (-1) \cdot 3 - 1 \cdot 4, 1 \cdot (-2) - 2 \cdot 3 \right)

 A×B=(82,34,26)\text{ }\overrightarrow{A} \times \overrightarrow{B} = (8 - 2, -3 - 4, -2 - 6)

 A×B=(6,7,8)\text{ }\overrightarrow{A} \times \overrightarrow{B} = (6, -7, -8)

Scalar Triple Product:

Given vectors  A,B,C\text{ }\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}:
 A(B×C)\text{ }\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C})

Example Question

Find the scalar triple product of vectors  A=(1,2,3)\text{ }\overrightarrow{A} = (1, -2, 3),  B=(2,1,4)\text{ }\overrightarrow{B} = (2, 1, -4), and  C=(3,2,5)\text{ }\overrightarrow{C} = (-3, 2, 5).

Solution:

Given vectors  A=(1,2,3)\text{ }\overrightarrow{A} = (1, -2, 3),  B=(2,1,4)\text{ }\overrightarrow{B} = (2, 1, -4), and  C=(3,2,5)\text{ }\overrightarrow{C} = (-3, 2, 5):

 B×C=(15(4)2,(4)(3)15,122(3))=(5+8,125,2+6)=(13,7,8)\text{ }\overrightarrow{B} \times \overrightarrow{C} = \left( 1 \cdot 5 - (-4) \cdot 2, (-4) \cdot (-3) - 1 \cdot 5, 1 \cdot 2 - 2 \cdot (-3) \right) = (5 + 8, 12 - 5, 2 + 6) = (13, 7, 8)

 A(B×C)=113+(2)7+38=1314+24=23\text{ }\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = 1 \cdot 13 + (-2) \cdot 7 + 3 \cdot 8 = 13 - 14 + 24 = 23

Vector Triple Product:

Given vectors  A,B,C\text{ }\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}:
 A×(B×C)=(AC)B(AB)C\text{ }\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = (\overrightarrow{A} \cdot \overrightarrow{C}) \overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{C}

Example Question

Find the vector triple product of vectors  A=(1,2,1)\text{ }\overrightarrow{A} = (1, 2, -1),  B=(3,2,4)\text{ }\overrightarrow{B} = (3, -2, 4), and  C=(2,4,3)\text{ }\overrightarrow{C} = (2, 4, -3).

Solution:

Given vectors  A=(1,2,1)\text{ }\overrightarrow{A} = (1, 2, -1),  B=(3,2,4)\text{ }\overrightarrow{B} = (3, -2, 4), and  C=(2,4,3)\text{ }\overrightarrow{C} = (2, 4, -3):

 B×C=(244(3),(3)244,1(3)22)=(8+12,616,34)=(20,22,7)\text{ }\overrightarrow{B} \times \overrightarrow{C} = \left( 2 \cdot 4 - 4 \cdot (-3), (-3) \cdot 2 - 4 \cdot 4, 1 \cdot (-3) - 2 \cdot 2 \right) = (8 + 12, -6 - 16, -3 - 4) = (20, -22, -7)

 AC=12+24+(1)(3)=2+8+3=13\text{ }\overrightarrow{A} \cdot \overrightarrow{C} = 1 \cdot 2 + 2 \cdot 4 + (-1) \cdot (-3) = 2 + 8 + 3 = 13

 AB=13+2(2)+(1)4=344=5\text{ }\overrightarrow{A} \cdot \overrightarrow{B} = 1 \cdot 3 + 2 \cdot (-2) + (-1) \cdot 4 = 3 - 4 - 4 = -5

 A×(B×C)=(13(3,2,4))(5(2,4,3))=(39,26,52)+(10,20,15)=(49,46,67)\text{ }\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = (13 \cdot (3, -2, 4)) - (-5 \cdot (2, 4, -3)) = (39, -26, 52) + (10, -20, 15) = (49, -46, 67)

Equation of a Line in Vector Form:

A line passing through a point with position vector  a\text{ }\overrightarrow{a} and parallel to vector  b\text{ }\overrightarrow{b}:
 r=a+λb\text{ }\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}

Example Question

Find the vector equation of the line passing through the point with position vector  a=(1,2,3)\text{ }\overrightarrow{a} = (1, 2, 3) and parallel to the vector  b=(4,1,2)\text{ }\overrightarrow{b} = (4, -1, 2).

Solution:

The vector equation of a line passing through  a=(1,2,3)\text{ }\overrightarrow{a} = (1, 2, 3) and parallel to  b=(4,1,2)\text{ }\overrightarrow{b} = (4, -1, 2) is:

 r=(1,2,3)+λ(4,1,2)\text{ }\overrightarrow{r} = (1, 2, 3) + \lambda (4, -1, 2)

Equation of a Plane in Vector Form:

A plane passing through a point with position vector  a\text{ }\overrightarrow{a} and normal to vector  n\text{ }\overrightarrow{n}:
 rn=an\text{ }\overrightarrow{r} \cdot \overrightarrow{n} = \overrightarrow{a} \cdot \overrightarrow{n}

Example Question

Find the vector equation of the plane passing through the point with position vector  a=(1,2,3)\text{ }\overrightarrow{a} = (1, -2, 3) and normal to the vector  n=(4,5,6)\text{ }\overrightarrow{n} = (4, 5, -6).

Solution:

The vector equation of a plane passing through  a=(1,2,3)\text{ }\overrightarrow{a} = (1, -2, 3) and normal to  n=(4,5,6)\text{ }\overrightarrow{n} = (4, 5, -6) is:

 r(4,5,6)=(1,2,3)(4,5,6)\text{ }\overrightarrow{r} \cdot (4, 5, -6) = (1, -2, 3) \cdot (4, 5, -6)

 r(4,5,6)=41018=24\text{ }\overrightarrow{r} \cdot (4, 5, -6) = 4 - 10 - 18 = -24

So the equation of the plane is:

 r(4,5,6)=24\text{ }\overrightarrow{r} \cdot (4, 5, -6) = -24

Distance Between Two Points

If  P(x1,y1,z1)\text{ }P(x_1, y_1, z_1) and  Q(x2,y2,z2)\text{ }Q(x_2, y_2, z_2) are two points in space, the distance  PQ\text{ }PQ is given by:

 PQ=(x2x1)2+(y2y1)2+(z2z1)2\text{ }PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}

Example Question

Find the distance between points  P(1,2,3)\text{ }P(1, 2, 3) and  Q(4,6,8)\text{ }Q(4, 6, 8).

Solution:

The distance  PQ\text{ }PQ is given by:

 PQ=(41)2+(62)2+(83)2\text{ }PQ = \sqrt{(4 - 1)^2 + (6 - 2)^2 + (8 - 3)^2}

 PQ=32+42+52\text{ }PQ = \sqrt{3^2 + 4^2 + 5^2}

 PQ=9+16+25=50=52\text{ }PQ = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}

So, the distance between the points is  52\text{ }5\sqrt{2} units.

Direction Cosines and Ratios

If  α,β,γ\text{ }\alpha, \beta, \gamma are the angles a vector makes with the positive  x\text{ }x,  y\text{ }y, and  z\text{ }z axes respectively, then the direction cosines are  cosα,cosβ,cosγ\text{ }\cos\alpha, \cos\beta, \cos\gamma. These satisfy:

 cos2α+cos2β+cos2γ=1\text{ }\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1

If  l,m,n\text{ }l, m, n are the direction cosines, then:

 l=cosα,  m=cosβ,  n=cosγ\text{ }l = \cos \alpha, \; m = \cos \beta, \; n = \cos \gamma

Example Question

Find the direction cosines of a vector making angles  45,60,\text{ }45^\circ, 60^\circ, and  cos1(13)\text{ }cos^{-1}\left(\frac{1}{3}\right) with the positive  x\text{ }x,  y\text{ }y, and  z\text{ }z axes respectively.

Solution:

The direction cosines are given by:

 l=cos45=12,  m=cos60=12,  n=cos(cos1(13))=13\text{ }l = \cos 45^\circ = \frac{1}{\sqrt{2}}, \; m = \cos 60^\circ = \frac{1}{2}, \; n = \cos \left( \cos^{-1} \left(\frac{1}{3}\right) \right) = \frac{1}{3}

Thus, the direction cosines are:

 l=12,  m=12,  n=13\text{ }l = \frac{1}{\sqrt{2}}, \; m = \frac{1}{2}, \; n = \frac{1}{3}

Equation of a Straight Line in Space

Vector Form: The equation of a straight line passing through point A\vec{A} with position vector a\vec{a} and parallel to vector b\vec{b} is:

r=a+tb\vec{r} = \vec{a} + t\vec{b}

Cartesian Form: If A(x1,y1,z1)\vec{A}(x_1, y_1, z_1) and the line has direction ratios a,b,ca, b, c, then the Cartesian equation is:

xx1a=yy1b=zz1c\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}

Example Questions

Example 1: Vector Form

Find the vector form equation of a line passing through the point (1,2,3)(1, 2, 3) and parallel to vector (2,1,4)(2, -1, 4).

Solution:

The vector form equation of a line passing through (1,2,3)(1, 2, 3) and parallel to (2,1,4)(2, -1, 4) is:

r=(1,2,3)+t(2,1,4)\vec{r} = (1, 2, 3) + t(2, -1, 4)

Example 2: Cartesian Form

Find the Cartesian equation of a line passing through the point (1,2,3)(1, 2, 3) and having direction ratios 2,1,42, -1, 4.

Solution:

The Cartesian equation of a line passing through (1,2,3)(1, 2, 3) with direction ratios 2,1,42, -1, 4 is:

x12=y21=z34\frac{x - 1}{2} = \frac{y - 2}{-1} = \frac{z - 3}{4}

Equation of a Plane

Vector Form: The equation of a plane passing through a point A(x1,y1,z1)\vec{A}(x_1, y_1, z_1) with normal vector n=ai+bj+ck\vec{n} = ai + bj + ck is:

a(xx1)+b(yy1)+c(zz1)=0a(x - x_1) + b(y - y_1) + c(z - z_1) = 0

Cartesian Form: The equation of the plane is:

Ax+By+Cz+D=0Ax + By + Cz + D = 0

Example Question

Find the Cartesian equation of the plane passing through the point (1,1,2)(1, -1, 2) with normal vector (2,3,4)(2, 3, -4).

Solution:

The Cartesian equation of the plane passing through (1,1,2)(1, -1, 2) with normal vector (2,3,4)(2, 3, -4) is:

2(x1)+3(y+1)4(z2)=02(x - 1) + 3(y + 1) - 4(z - 2) = 0

2x2+3y+34z+8=02x - 2 + 3y + 3 - 4z + 8 = 0

2x+3y4z+9=02x + 3y - 4z + 9 = 0

Angle Between Two Lines

If two lines have direction cosines  (l1,m1,n1)\text{ }(l_1, m_1, n_1) and  (l2,m2,n2)\text{ }(l_2, m_2, n_2), the cosine of the angle  θ\text{ }\theta between them is given by:

 cosθ=l1l2+m1m2+n1n2\text{ }\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2

Example Question

Find the cosine of the angle between two lines with direction cosines  (1/3,1/3,1/3)\text{ }(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) and  (0,1,0)\text{ }(0, 1, 0).

Solution:

The cosine of the angle  θ\text{ }\theta is given by:

 cosθ=(130)+(131)+(130)\text{ }\cos \theta = \left( \frac{1}{\sqrt{3}} \cdot 0 \right) + \left( \frac{1}{\sqrt{3}} \cdot 1 \right) + \left( \frac{1}{\sqrt{3}} \cdot 0 \right)

 cosθ=0+13+0=13\text{ }\cos \theta = 0 + \frac{1}{\sqrt{3}} + 0 = \frac{1}{\sqrt{3}}

Angle Between Two Planes

If the normal vectors of two planes are  n1=a1i+b1j+c1k\text{ }\vec{n_1} = a_1i + b_1j + c_1k and  n2=a2i+b2j+c2k\text{ }\vec{n_2} = a_2i + b_2j + c_2k, the cosine of the angle  θ\text{ }\theta between the planes is given by:

 cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\text{ }\cos \theta = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}

Example Question

Find the cosine of the angle between two planes with normal vectors  (1,2,3)\text{ }(1, 2, 3) and  (4,5,6)\text{ }(4, -5, 6).

Solution:

The cosine of the angle  θ\text{ }\theta is given by:

 cosθ=14+2(5)+3612+22+3242+(5)2+62\text{ }\cos \theta = \frac{1 \cdot 4 + 2 \cdot (-5) + 3 \cdot 6}{\sqrt{1^2 + 2^2 + 3^2} \cdot \sqrt{4^2 + (-5)^2 + 6^2}}

 cosθ=410+181+4+916+25+36\text{ }\cos \theta = \frac{4 - 10 + 18}{\sqrt{1 + 4 + 9} \cdot \sqrt{16 + 25 + 36}}

 cosθ=121477=121078=1232.820.365\text{ }\cos \theta = \frac{12}{\sqrt{14} \cdot \sqrt{77}} = \frac{12}{\sqrt{1078}} = \frac{12}{32.82} \approx 0.365

Distance of a Point from a Plane

If a point  P(x1,y1,z1)\text{ }P(x_1, y_1, z_1) and a plane  Ax+By+Cz+D=0\text{ }Ax + By + Cz + D = 0, the distance  d\text{ }d is given by:

 d=Ax1+By1+Cz1+DA2+B2+C2\text{ }d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}

Example Question

Find the distance from the point  (3,1,2)\text{ }(3, -1, 2) to the plane  2x3y+6z+5=0\text{ }2x - 3y + 6z + 5 = 0.

Solution:

The distance  d\text{ }d is given by:

 d=233(1)+62+522+(3)2+62\text{ }d = \frac{|2 \cdot 3 - 3 \cdot (-1) + 6 \cdot 2 + 5|}{\sqrt{2^2 + (-3)^2 + 6^2}}

 d=6+3+12+54+9+36\text{ }d = \frac{|6 + 3 + 12 + 5|}{\sqrt{4 + 9 + 36}}

 d=2649=2673.71\text{ }d = \frac{26}{\sqrt{49}} = \frac{26}{7} \approx 3.71

So, the distance from the point to the plane is approximately  3.71\text{ }3.71 units.

Distance Between Two Parallel Planes

If the equations of two parallel planes are  Ax+By+Cz+D1=0\text{ }Ax + By + Cz + D_1 = 0 and  Ax+By+Cz+D2=0\text{ }Ax + By + Cz + D_2 = 0, the distance  d\text{ }d between them is:

 d=D2D1A2+B2+C2\text{ }d = \frac{|D_2 - D_1|}{\sqrt{A^2 + B^2 + C^2}}

Example Question

Find the distance between the planes  2x3y+4z5=0\text{ }2x - 3y + 4z - 5 = 0 and  2x3y+4z+7=0\text{ }2x - 3y + 4z + 7 = 0.

Solution:

The distance  d\text{ }d is given by:

 d=7(5)22+(3)2+42\text{ }d = \frac{|7 - (-5)|}{\sqrt{2^2 + (-3)^2 + 4^2}}

 d=1229125.392.23\text{ }d = \frac{12}{\sqrt{29}} \approx \frac{12}{5.39} \approx 2.23

So, the distance between the planes is approximately  2.23\text{ }2.23 units.

Length of a Vector:

Given vector  A\text{ }\overrightarrow{A}:
 A=AA\text{ }|\overrightarrow{A}| = \sqrt{\overrightarrow{A} \cdot \overrightarrow{A}}

Example Question

Find the length of the vector  V=(3,4,5)\text{ }\vec{V} = (3, -4, 5).

Solution:

The length of the vector  V\text{ }\vec{V} is:

 V=(3)2+(4)2+(5)2\text{ }|\vec{V}| = \sqrt{(3)^2 + (-4)^2 + (5)^2}

 V=9+16+25\text{ }|\vec{V}| = \sqrt{9 + 16 + 25}

 V=50=52\text{ }|\vec{V}| = \sqrt{50} = 5\sqrt{2}

Properties of Scalar Product:

1.  AB=BA\text{ }\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A}
2.  A(λB)=λ(AB)\text{ }\overrightarrow{A} \cdot (\lambda \overrightarrow{B}) = \lambda (\overrightarrow{A} \cdot \overrightarrow{B})
3.  A(B+C)=AB+AC\text{ }\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{A} \cdot \overrightarrow{C}

Example Question

Verify the properties of scalar product for vectors  A=(2,3,1)\text{ }\vec{A} = (2, 3, -1) and  B=(4,2,5)\text{ }\vec{B} = (4, -2, 5).

Solution:

Let's verify each property:

  1.  AB=(2)(4)+(3)(2)+(1)(5)=865=3\text{ }\vec{A} \cdot \vec{B} = (2)(4) + (3)(-2) + (-1)(5) = 8 - 6 - 5 = -3
  2.  A(3B)=(2)(34)+(3)(32)+(1)(35)=241815=9\text{ }\vec{A} \cdot (3\vec{B}) = (2)(3 \cdot 4) + (3)(3 \cdot -2) + (-1)(3 \cdot 5) = 24 - 18 - 15 = -9
  3.  A(B+C)=AB+ vecAC\text{ }\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \ vec{A} \cdot \vec{C}
    Let's take another vector  C=(1,2,3)\text{ }\vec{C} = (-1, 2, 3).
     A(B+C)=(2)(41)+(3)(2+2)+(1)(5+3)=668=8\text{ }\vec{A} \cdot (\vec{B} + \vec{C}) = (2)(4 - 1) + (3)(-2 + 2) + (-1)(5 + 3) = 6 - 6 - 8 = -8
     AB+AC=3+(2)(1)+(3)(2)+(1)(3)=32+63=2\text{ }\vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} = -3 + (2)(-1) + (3)(2) + (-1)(3) = -3 - 2 + 6 - 3 = -2

Thus, all properties hold true for the given vectors.

Properties of Vector Product:

1.  A×B=(B×A)\text{ }\overrightarrow{A} \times \overrightarrow{B} = - (\overrightarrow{B} \times \overrightarrow{A})
2.  A×(B+C)=A×B+A×C\text{ }\overrightarrow{A} \times (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} \times \overrightarrow{B} + \overrightarrow{A} \times \overrightarrow{C}
3.  A×(λB)=λ(A×B)\text{ }\overrightarrow{A} \times (\lambda \overrightarrow{B}) = \lambda (\overrightarrow{A} \times \overrightarrow{B})

Example Question

Verify the properties of vector product for vectors  A=(2,1,3)\text{ }\vec{A} = (2, 1, -3) and  B=(4,2,5)\text{ }\vec{B} = (4, -2, 5).

Solution:

Let's verify each property:

  1.  A×B=(2i+j3k)×(4i2j+5k)\text{ }\vec{A} \times \vec{B} = (2i + j - 3k) \times (4i - 2j + 5k)
  2.  =(1)(5)(3)(2)(2)(4)((3)(4)2(5)(1)(2))i+((2)(4)(2)(1)(1)(5))j+((3)(2)1(4)(1)(2))k\text{ }= (1)(5) - (-3)(-2) - (2)(4) - ((-3)(4) - 2(5) - (1)(-2))i + ((2)(4) - (2)(1) - (1)(5))j + ((-3)(-2) - 1(4) - (1)(-2))k

     =5+68(8102)i+(825)j+(64+2)k\text{ }= 5 + 6 - 8 - (8 - 10 - 2)i + (8 - 2 - 5)j + (6 - 4 + 2)k

     =3i1j+4k\text{ }= 3i - 1j + 4k

    Now, let's calculate  B×A\text{ }\vec{B} \times \vec{A}.

     B×A=(A×B)\text{ }\vec{B} \times \vec{A} = - (\vec{A} \times \vec{B})

     =(3i1j+4k)\text{ }= - (3i - 1j + 4k)

     =3i+j4k\text{ }= -3i + j - 4k

    Thus,  A×B=(B×A)\text{ }\vec{A} \times \vec{B} = - (\vec{B} \times \vec{A}).

  3. Similarly, let's verify the other properties.
  4.  A×(B+C)=A×B+A×C\text{ }\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}
  5. We'll use another vector  C=(1,2,3)\text{ }\vec{C} = (-1, 2, 3).

     A×(B+C)=(3i1j+4k)×((4i2j+5k)+(i+2j+3k))\text{ }\vec{A} \times (\vec{B} + \vec{C}) = (3i - 1j + 4k) \times ((4i - 2j + 5k) + (-i + 2j + 3k))

     =(3i1j+4k)×(3ij+8k)\text{ }= (3i - 1j + 4k) \times (3i - j + 8k)

     =(1)(8)(4)(1)(3)(3)((3)(3)4(1)(1)(8))i+((3)(3)1(8)4(8))j+((3)(1)1(3)4(3))k\text{ }= (1)(8) - (4)(-1) - (3)(3) - ((3)(3) - 4(-1) - (1)(8))i + ((3)(3) - 1(8) - 4(8))j + ((3)(-1) - 1(3) - 4(3))k

     =8+49(9+48)i+(9832)j+(3312)k\text{ }= 8 + 4 - 9 - (9 + 4 - 8)i + (9 - 8 - 32)j + (-3 - 3 - 12)k

     =3i27j18k\text{ }= 3i - 27j - 18k

    Now, let's calculate  A×B+A×C\text{ }\vec{A} \times \vec{B} + \vec{A} \times \vec{C}.

     A×B+A×C=(3i1j+4k)+(3i27j18k)\text{ }\vec{A} \times \vec{B} + \vec{A} \times \vec{C} = (3i - 1j + 4k) + (3i - 27j - 18k)

     =3i1j+4k+3i27j18k\text{ }= 3i - 1j + 4k + 3i - 27j - 18k

     =6i28j14k\text{ }= 6i - 28j - 14k

    Thus,  A×(B+C)=A×B+A×C\text{ }\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}.

  6. Similarly, let's verify the last property.
  7. ...

Area of a Triangle:

Given vectors  A\text{ }\overrightarrow{A} and  B\text{ }\overrightarrow{B} representing two sides of the triangle:
 Area=12A×B\text{ }\text{Area} = \frac{1}{2} |\overrightarrow{A} \times \overrightarrow{B}|

Example Question

Find the area of the triangle formed by the vectors  A=(3,4,5)\text{ }\vec{A} = (3, -4, 5) and  B=(1,2,2)\text{ }\vec{B} = (1, 2, -2).

Solution:

The area of the triangle is:

 Area=12A×B\text{ }\text{Area} = \frac{1}{2} |\vec{A} \times \vec{B}|

Let's calculate  A×B\text{ }\vec{A} \times \vec{B}.

 A×B=(3i4j+5k)×(i+2j2k)\text{ }\vec{A} \times \vec{B} = (3i - 4j + 5k) \times (i + 2j - 2k)

 =((4)(2)(5)(2))i+((5)(1)(3)(2))j+((3)(2)(4)(1))k\text{ }= ((-4)(-2) - (5)(2))i + ((5)(1) - (3)(-2))j + ((3)(2) - (-4)(1))k

 =(810)i+(5+6)j+(6+4)k\text{ }= (8 - 10)i + (5 + 6)j + (6 + 4)k

 =2i+11j+10k\text{ }= -2i + 11j + 10k

Now, let's find the magnitude of  A×B\text{ }\vec{A} \times \vec{B}.

 A×B=(2)2+112+102\text{ }|\vec{A} \times \vec{B}| = \sqrt{(-2)^2 + 11^2 + 10^2}

 =4+121+100\text{ }= \sqrt{4 + 121 + 100}

 =225=15\text{ }= \sqrt{225} = 15

Therefore, the area of the triangle is:

 Area=12×15=7.5\text{ }\text{Area} = \frac{1}{2} \times 15 = 7.5 square units

Volume of a Parallelepiped:

Given vectors A,B,C\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}:
Volume=A(B×C)\text{Volume} = |\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C})|

Example Question

Find the volume of the parallelepiped formed by the vectors A=(1,2,3)\vec{A} = (1, -2, 3), B=(2,1,3)\vec{B} = (2, 1, -3), and C=(3,4,5)\vec{C} = (3, 4, 5).

Solution:

The volume of the parallelepiped is:

Volume=A(B×C)\text{Volume} = |\vec{A} \cdot (\vec{B} \times \vec{C})|

Let's calculate B×C\vec{B} \times \vec{C} first.

(2i+j3k)×(3i+4j+5k)(2i + j - 3k) \times (3i + 4j + 5k)

=((1)(5)(3)(4))i((2)(5)(3)(3))j+((2)(4)(1)(3))k= \left( (1)(5) - (-3)(4) \right)i - \left( (2)(5) - (-3)(3) \right)j + \left( (2)(4) - (1)(3) \right)k

=(10+9)i(109)j+(83)k= (10 + 9)i - (10 - 9)j + (8 - 3)k

=19i1j+5k= 19i - 1j + 5k

Now, let's find the dot product of A\vec{A} and B×C\vec{B} \times \vec{C}.

A(19i1j+5k)\vec{A} \cdot (19i - 1j + 5k)

=(1)(19)+(2)(1)+(3)(5)= (1)(19) + (-2)(-1) + (3)(5)

=19+2+15= 19 + 2 + 15

=36= 36

Therefore, the volume of the parallelepiped is:

Volume=36|\text{Volume}| = 36

Midpoint Formula

The coordinates of the midpoint  R\text{ }R of the line segment joining  P(x1,y1,z1)\text{ }P(x_1, y_1, z_1) and  Q(x2,y2,z2)\text{ }Q(x_2, y_2, z_2) are:

 R(x1+x22,y1+y22,z1+z22)\text{ }R\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)

Example Question

Find the midpoint of the line segment joining the points  P(2,3,1)\text{ }P(2, 3, -1) and  Q(1,1,4)\text{ }Q(-1, 1, 4).

Solution:

The coordinates of the midpoint are:

 R(2+(1)2,3+12,1+42)\text{ }R\left(\frac{2 + (-1)}{2}, \frac{3 + 1}{2}, \frac{-1 + 4}{2}\right)

 =(12,42,32)\text{ }= \left(\frac{1}{2}, \frac{4}{2}, \frac{3}{2}\right)

 =(12,2,32)\text{ }= \left(\frac{1}{2}, 2, \frac{3}{2}\right)

Therefore, the midpoint of the line segment is  (12,2,32)\text{ }\left(\frac{1}{2}, 2, \frac{3}{2}\right).

Shortest Distance Between Two Skew Lines

The shortest distance  d\text{ }d between two skew lines with direction ratios  a1=(a1,b1,c1)\text{ }\mathbf{a_1} = (a_1, b_1, c_1) and  a2=(a2,b2,c2)\text{ }\mathbf{a_2} = (a_2, b_2, c_2) and points on the lines  r1=(x1,y1,z1)\text{ }\mathbf{r_1} = (x_1, y_1, z_1) and  r2=(x2,y2,z2)\text{ }\mathbf{r_2} = (x_2, y_2, z_2) respectively is given by:

 d=(r2r1)(a1×a2)a1×a2\text{ }d = \frac{|(\mathbf{r_2} - \mathbf{r_1}) \cdot (\mathbf{a_1} \times \mathbf{a_2})|}{|\mathbf{a_1} \times \mathbf{a_2}|}

Example Question

Find the shortest distance between the skew lines with direction ratios  a1=(1,1,2)\text{ }\vec{a_1} = (1, -1, 2) and  a2=(2,3,1)\text{ }\vec{a_2} = (2, 3, -1), and points  P(1,2,3)\text{ }P(1, 2, 3) and  Q(1,1,4)\text{ }Q(-1, -1, 4) lying on the lines respectively.

Solution:

First, we calculate the cross product  a1×a2\text{ }\mathbf{a_1} \times \mathbf{a_2}:

 a1×a2=(1,1,2)×(2,3,1)\text{ }\mathbf{a_1} \times \mathbf{a_2} = (1, -1, 2) \times (2, 3, -1)

 =i(2(1)3(2))j(1(2)2(1))+k(1(3)(1)(1))\text{ }= i(2(-1) - 3(2)) - j(1(2) - 2(-1)) + k(1(3) - (-1)(-1))

 =i(26)j(2+2)+k(31)\text{ }= i(-2 - 6) - j(2 + 2) + k(3 - 1)

 =i(8)j(4)+k(2)\text{ }= i(-8) - j(4) + k(2)

 =8i4j+2k\text{ }= -8i - 4j + 2k

Next, we find the vector joining the two points  r2r1\text{ }\mathbf{r_2} - \mathbf{r_1}:

 r2r1=(11,12,43)\text{ }\mathbf{r_2} - \mathbf{r_1} = (-1 - 1, -1 - 2, 4 - 3)

 =(2,3,1)\text{ }= (-2, -3, 1)

Now, we calculate the dot product of  r2r1\text{ }\mathbf{r_2} - \mathbf{r_1} and  a1×a2\text{ }\mathbf{a_1} \times \mathbf{a_2}:

 (r2r1)(a1×a2)=(2,3,1)(8,4,2)\text{ }(\mathbf{r_2} - \mathbf{r_1}) \cdot (\mathbf{a_1} \times \mathbf{a_2}) = (-2, -3, 1) \cdot (-8, -4, 2)

 =(2)(8)+(3)(4)+(1)(2)\text{ }= (-2)(-8) + (-3)(-4) + (1)(2)

 =16+12+2\text{ }= 16 + 12 + 2

 =30\text{ }= 30

Finally, we calculate the magnitude of the cross product  a1×a2\text{ }\mathbf{a_1} \times \mathbf{a_2}:

 a1×a2=(8)2+(4)2+22\text{ }|\mathbf{a_1} \times \mathbf{a_2}| = \sqrt{(-8)^2 + (-4)^2 + 2^2}

 =64+16+4\text{ }= \sqrt{64 + 16 + 4}

 =84\text{ }= \sqrt{84}

Therefore, the shortest distance between the skew lines is:

 d=3084=3084\text{ }d = \frac{|30|}{\sqrt{84}} = \frac{30}{\sqrt{84}}

Important Facts

→ For the vectors to be coplanar, a(b×c)\vec{a} \cdot (\vec{b} \times \vec{c}) must be zero:

→ Two vectors a and b are perpendicular if their dot product is zero, i.e., a⋅b=0​

Suggetested Articles