Matrix and Determinants Formulas - Cheatsheet | Last Minute Notes
Hey there! Welcome to KnowledgeKnot! Don't forget to share this with your friends and revisit often. Your support motivates us to create more content in the future. Thanks for being awesome!
Basic Matrix Operations
Matrix Addition: (A+B)ij=Aij+Bij
Example: If A=(1324) and B=(5768), then A+B=(1+53+72+64+8)=(610812).
Matrix Subtraction: (A−B)ij=Aij−Bij
Example: If A=(1324) and B=(5768), then A−B=(1−53−72−64−8)=(−4−4−4−4).
Scalar Multiplication: (cA)ij=c⋅Aij
Example: If A=(1324) and c=3, then cA=3⋅(1324)=(3⋅13⋅33⋅23⋅4)=(39612).
Matrix Multiplication: (AB)ij=∑kAikBkj
Example: If A=(1324) and B=(5768), then AB=(1⋅5+2⋅73⋅5+4⋅71⋅6+2⋅83⋅6+4⋅8)=(19432250).
Transpose of a Matrix: (AT)ij=Aji
Example: If A=(1324), then AT=(1234).
Special Matrices
Identity Matrix: Iij={10if i=jif i=j
Example: The 3x3 identity matrix is I=100010001.
Zero Matrix: All elements are zero, 0ij=0
Example: A 2x2 zero matrix is 0=(0000).
Diagonal Matrix: Dij={di0if i=jif i=j
Example: A 3x3 diagonal matrix is D=100020003.
Symmetric Matrix: A=AT
Example: If A=(1223), then AT=(1223), so A is symmetric.
Skew-Symmetric Matrix: A=−AT
Example: If A=(0−220), then AT=(02−20) and −AT=(0−220), so A is skew-symmetric.
Determinants
Determinant of a 2x2 Matrix: det(A)=acbd=ad−bc
Example: If A=(1324), then det(A)=1⋅4−2⋅3=4−6=−2.
Determinant of a 3x3 Matrix: det(A)=a(ei−fh)−b(di−fg)+c(dh−eg)
Example: If A=147258369, then det(A)=1(5⋅9−6⋅8)−2(4⋅9−6⋅7)+3(4⋅8−5⋅7)=1(45−48)−2(36−42)+3(32−35)=1(−3)−2(−6)+3(−3)=−3+12−9=0.
Properties of Determinants: det(AB)=det(A)⋅det(B) Example: If A=(1324) and B=(2102), then det(A)=−2, det(B)=4, and det(AB)=det((41048))=4⋅8−4⋅10=32−40=−8 which is equal to −2⋅4=−8.
det(AT)=det(A) Example: If A=(1324), then det(A)=−2 and det(AT)=det((1234))=1⋅4−3⋅2=4−6=−2.
If A is triangular, det(A) is the product of its diagonal elements. Example: If A=147058009, then det(A)=1⋅5⋅9=45.
Cofactor Matrix: The cofactor matrix of a matrix A is defined as Cij=(−1)i+jdet(Mij), where Mij is the minor of A obtained by removing the i-th row and j-th column.
Example: Calculate the cofactor matrix of matrix A=(1324).
Solution:M11=(4),M12=(3),M21=(2),M22=(1). Therefore,C11=(−1)1+1det(M11)=1⋅4=4,C12=(−1)1+2det(M12)=−1⋅3=−3,C21=(−1)2+1det(M21)=−1⋅2=−2,C22=(−1)2+2det(M22)=1⋅1=1. Thus, the cofactor matrix C is (4−2−31).
Adjugate Matrix: The adjugate matrix of A is denoted as adj(A)=CT, where C is the cofactor matrix of A.
Example: Find the adjugate matrix of B=(1324).
Solution: The cofactor matrix C calculated previously is (4−2−31). Therefore, the adjugate matrix adj(B) is (4−3−21).
Inverse of a Matrix
Inverse of a 2x2 Matrix: A−1=det(A)1(d−c−ba)
Example: If A=(1324), then det(A)=1⋅4−2⋅3=4−6=−2. Thus, A−1=−21(4−3−21)=(−21.51−0.5).
Inverse of a 3x3 Matrix: To find the inverse of a 3x3 matrix, we follow these steps:
Calculate the determinant of the matrix.
Find the matrix of minors.
Convert the matrix of minors to the matrix of cofactors.
Transpose the matrix of cofactors to get the adjugate matrix.
Divide each element of the adjugate matrix by the determinant.
where Aij is the minor matrix obtained by deleting the i-th row and j-th column from A.
Example: If A=105216340, then: det(A)=1⋅(1⋅0−4⋅6)−2⋅(0⋅0−4⋅5)+3⋅(0⋅6−1⋅5)=−24+40−15=1. The minors of A are: −2412−220−153−55−1. The cofactors of A are: −24−12−2−20−15−3−5−5−1. The adjugate (transpose of cofactors) is: −24−20−5−12−15−5−2−3−1. Thus, the inverse of A is: A−1=11−24−20−5−12−15−5−2−3−1=−24−20−5−12−15−5−2−3−1.
General Formula: If det(A)=0, then A−1 exists, and AA−1=A−1A=I
Example: Using the above matrix A=(1324) and its inverse A−1=(−21.51−0.5): A⋅A−1=(1324)⋅(−21.51−0.5)=(1⋅−2+2⋅1.5)(1⋅1+2⋅−0.5)(3⋅−2+4⋅1.5)(3⋅1+4⋅−0.5)=(1001)=I.
Properties: (A−1)−1=A Example: If A−1=(−21.51−0.5), then (A−1)−1=(1324)=A.
(AB)−1=B−1A−1 Example: If A=(1324) and B=(2102), then A−1=(−21.51−0.5) and B−1=(0.5−0.2500.5). Thus, (AB)−1=B−1A−1=(0.5−0.2500.5)⋅(−21.51−0.5).
(AT)−1=(A−1)T Example: If A=(1324), then A−1=(−21.51−0.5) and (A−1)T=(−211.5−0.5) which is the inverse of AT=(1234).
Trace of a Matrix
Definition: The trace of a square matrix is defined as the sum of its diagonal elements. trace(A)=∑iAii
Example: Consider the matrix A=147258369. To find the trace of A, we sum its diagonal elements: trace(A)=1+5+9=15.
Eigenvalues and Eigenvectors
Eigenvalue Equation: Av=λv
Example: If A=(2112) and v=(11), then Av=(2112)(11)=(33). Thus, λ=3.
Characteristic Polynomial: det(A−λI)=0
Example: If A=(2112), then A−λI=(2−λ112−λ). The characteristic polynomial is det((2−λ112−λ))=(2−λ)2−1=λ2−4λ+3=0. Solving for λ, we get λ=1,3.
Properties: Sum of eigenvalues = Trace of A Example: If A=(2112), the eigenvalues are 1 and 3. The sum is 1+3=4, which is equal to the trace of A (2+2=4).
Product of eigenvalues = det(A) Example: If A=(2112), the eigenvalues are 1 and 3. The product is 1⋅3=3, which is equal to the determinant of A (2⋅2−1⋅1=4−1=3).
Rank of a Matrix
Definition: The rank of a matrix is the maximum number of linearly independent row vectors or column vectors in the matrix.
Example: Consider the matrix A=147258369. Its row vectors are (123), (456), and (789). Since the third row vector can be expressed as a linear combination of the first two, the rank of A is 2.
Details: The third row vector (789) can be written as 0⋅(123)+1⋅(456), demonstrating that it is indeed a linear combination of the first two row vectors.
Properties:
rank(A)≤min(m,n) for an m×n matrix A.
Example: If A is a 3×4 matrix, then rank(A)≤min(3,4)=3.
rank(AB)≤min(rank(A),rank(B)).
Example: If A is a 3×2 matrix with rank 2, and B is a 2×4 matrix with rank 2, then rank(AB)≤min(2,2)=2.
Cramer's Rule
Cramer's Rule provides a method to solve systems of linear equations of the form AX=B. Specifically, it states that xi=det(A)det(Ai), where Ai is the matrix A with its i-th column replaced by B.
Example: Solve the system of equations 2x+3y=8 and 4x−y=6 using Cramer's Rule.
Solution:
Calculate det(A) where A=(243−1): det(A)=2⋅(−1)−3⋅4=−2−12=−14.
Calculate det(A1) where A1=(863−1): det(A1)=8⋅(−1)−3⋅6=−8−18=−26.
Calculate det(A2) where A2=(2486): det(A2)=2⋅6−8⋅4=12−32=−20.
Find x and y:x=det(A)det(A1)=−14−26=713,y=det(A)det(A2)=−14−20=710.
Therefore, the solution is x=713 and y=710.
Useful Properties
Distributive Property: A(B+C)=AB+AC
Example: Verify the distributive property for matrices with the following matrices: A=(1324),B=(2113),C=(0412).
Solution: Compute A(B+C) and AB+AC to show they are equal: A(B+C)=A((2113)+(0412))=A((2525))=(12261226), AB+AC=(1324)(2113)+(1324)(0412)=(410715)+(820511)=(12301226). Therefore, A(B+C)=AB+AC.
Associative Property: A(BC)=(AB)C
Example: Demonstrate the associative property using the matrices: A=(1324),B=(2113),C=(0412).
Solution: Compute A(BC) and (AB)C to show they are equal: A(BC)=(1324)((2113)(0412))=(1324)(412511)=(28602757), (AB)C=((1324)(2113))(0412)=(410715)(0412)=(28602757). Therefore, A(BC)=(AB)C.
Commutative Property (not general, special cases only): AB=BA for certain matrices.
Example: Find matrices A and B such that AB=BA.
Solution: Let A=(1000) and B=(0010). Compute AB and BA: AB=(1000)(0010)=(0010), BA=(0010)(1000)=(0000). Therefore, AB=BA in this case.