Limits and Continuity Complete Cheatsheet | Formulas & Examples

Hey there! Welcome to KnowledgeKnot! Don't forget to share this with your friends and revisit often. Your support motivates us to create more content in the future. Thanks for being awesome!

Quick Reference - Key Formulas

  • Basic Limit: limxcf(x)=L\lim_{x \to c} f(x) = L
  • Continuity at point c: limxcf(x)=f(c)\lim_{x \to c} f(x) = f(c)
  • L'Hôpital's Rule: limxcf(x)g(x)=limxcf(x)g(x)\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} (if indeterminate form)
  • Squeeze Theorem: If g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) and limxcg(x)=limxch(x)=L\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L, then limxcf(x)=L\lim_{x \to c} f(x) = L
  • Standard Limits: limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1, limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e
  • One-sided Limits: limxcf(x)\lim_{x \to c^-} f(x) (left), limxc+f(x)\lim_{x \to c^+} f(x) (right)

Definition of Limits

Intuitive Definition: The limit of f(x)f(x) as xx approaches cc is LL if the values of f(x)f(x) get arbitrarily close to LL as xx gets arbitrarily close to cc.

limxcf(x)=L\lim_{x \to c} f(x) = L

ε-δ Definition (Formal): For every ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that:

0<xc<δ    f(x)L<ϵ0 < |x - c| < \delta \implies |f(x) - L| < \epsilon

Example: Find limx2(3x+1)\lim_{x \to 2} (3x + 1).

Solution: As xx approaches 2, 3x+13x + 1 approaches 3(2)+1=73(2) + 1 = 7. Therefore, limx2(3x+1)=7\lim_{x \to 2} (3x + 1) = 7.

Properties of Limits

If limxcf(x)=L\lim_{x \to c} f(x) = L and limxcg(x)=M\lim_{x \to c} g(x) = M, then:

Sum/Difference Rule:

limxc[f(x)±g(x)]=L±M\lim_{x \to c} [f(x) \pm g(x)] = L \pm M

Example: limx1[(x2+2x)+(3x1)]=limx1(x2+2x)+limx1(3x1)=(1+2)+(31)=7\lim_{x \to 1} [(x^2 + 2x) + (3x - 1)] = \lim_{x \to 1} (x^2 + 2x) + \lim_{x \to 1} (3x - 1) = (1 + 2) + (3 - 1) = 7

Product Rule:

limxc[f(x)g(x)]=LM\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M

Example: limx2[x(x+1)]=limx2xlimx2(x+1)=23=6\lim_{x \to 2} [x \cdot (x + 1)] = \lim_{x \to 2} x \cdot \lim_{x \to 2} (x + 1) = 2 \cdot 3 = 6

Quotient Rule:

limxcf(x)g(x)=LM(provided M0)\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M} \quad \text{(provided } M \neq 0\text{)}

Example: limx3x2x+1=limx3x2limx3(x+1)=94\lim_{x \to 3} \frac{x^2}{x + 1} = \frac{\lim_{x \to 3} x^2}{\lim_{x \to 3} (x + 1)} = \frac{9}{4}

Power Rule:

limxc[f(x)]n=Ln\lim_{x \to c} [f(x)]^n = L^n

Example: limx2(x+1)3=[limx2(x+1)]3=33=27\lim_{x \to 2} (x + 1)^3 = [\lim_{x \to 2} (x + 1)]^3 = 3^3 = 27

Constant Multiple Rule:

limxc[kf(x)]=kL\lim_{x \to c} [k \cdot f(x)] = k \cdot L

Example: limx1[5x2]=5limx1x2=51=5\lim_{x \to 1} [5x^2] = 5 \cdot \lim_{x \to 1} x^2 = 5 \cdot 1 = 5

One-Sided Limits

Left-Hand Limit: limxcf(x)\lim_{x \to c^-} f(x) - The limit as xx approaches cc from the left (values less than cc).

Right-Hand Limit: limxc+f(x)\lim_{x \to c^+} f(x) - The limit as xx approaches cc from the right (values greater than cc).

Important Result: limxcf(x)=L\lim_{x \to c} f(x) = L exists if and only if:

limxcf(x)=limxc+f(x)=L\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L

Example: Find the one-sided limits of f(x)=xxf(x) = \frac{|x|}{x} at x=0x = 0.

Solution:

  • Left-hand limit: limx0xx=limx0xx=limx0(1)=1\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = \lim_{x \to 0^-} (-1) = -1
  • Right-hand limit: limx0+xx=limx0+xx=limx0+1=1\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1

Since the left and right limits are different, limx0f(x)\lim_{x \to 0} f(x) does not exist.

Limits at Infinity

Horizontal Asymptotes: Describe the behavior of functions as x±x \to \pm\infty.

For Rational Functions: If f(x)=anxn++a0bmxm++b0f(x) = \frac{a_n x^n + \ldots + a_0}{b_m x^m + \ldots + b_0}:

  • If n<mn < m: limxf(x)=0\lim_{x \to \infty} f(x) = 0
  • If n=mn = m: limxf(x)=anbm\lim_{x \to \infty} f(x) = \frac{a_n}{b_m}
  • If n>mn > m: limxf(x)=±\lim_{x \to \infty} f(x) = \pm\infty

Example 1: Find limx3x2+2x+1x25\lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 - 5}.

Solution: Since the degrees are equal (both 2), the limit is 31=3\frac{3}{1} = 3.

Example 2: Find limx2x+1x2+3\lim_{x \to \infty} \frac{2x + 1}{x^2 + 3}.

Solution: Since the degree of numerator (1) is less than denominator (2), the limit is 00.

Infinite Limits: limxcf(x)=±\lim_{x \to c} f(x) = \pm\infty indicates vertical asymptotes.

Example: limx0+1x=+\lim_{x \to 0^+} \frac{1}{x} = +\infty and limx01x=\lim_{x \to 0^-} \frac{1}{x} = -\infty

Standard Limits

These are fundamental limits that appear frequently in calculus:

Trigonometric Limits:

  • limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1
  • limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1
  • limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}

Example: Find limx0sin3xx\lim_{x \to 0} \frac{\sin 3x}{x}.

Solution: limx0sin3xx=limx0sin3x3x3=13=3\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot 3 = 1 \cdot 3 = 3

Exponential and Logarithmic Limits:

  • limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e
  • limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1
  • limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1
  • limx0ax1x=lna\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a

Example: Find limx0e2x1x\lim_{x \to 0} \frac{e^{2x} - 1}{x}.

Solution: limx0e2x1x=limx0e2x12x2=12=2\lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{x \to 0} \frac{e^{2x} - 1}{2x} \cdot 2 = 1 \cdot 2 = 2

Indeterminate Forms and L'Hôpital's Rule

Indeterminate Forms: 00\frac{0}{0}, \frac{\infty}{\infty}, 00 \cdot \infty, \infty - \infty, 000^0, 11^\infty, 0\infty^0

L'Hôpital's Rule: If limxcf(x)=0\lim_{x \to c} f(x) = 0 and limxcg(x)=0\lim_{x \to c} g(x) = 0 (or both approach ±\pm\infty), then:

limxcf(x)g(x)=limxcf(x)g(x)\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

(provided the right-hand limit exists)

Example 1: Find limx0x21cosx\lim_{x \to 0} \frac{x^2}{1 - \cos x}.

Solution: This is 00\frac{0}{0} form. Applying L'Hôpital's rule:

limx0x21cosx=limx02xsinx=limx02cosx=21=2\lim_{x \to 0} \frac{x^2}{1 - \cos x} = \lim_{x \to 0} \frac{2x}{\sin x} = \lim_{x \to 0} \frac{2}{\cos x} = \frac{2}{1} = 2

Example 2: Find limxx2ex\lim_{x \to \infty} \frac{x^2}{e^x}.

Solution: This is \frac{\infty}{\infty} form. Applying L'Hôpital's rule twice:

limxx2ex=limx2xex=limx2ex=0\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0

Algebraic Method Example: Find limx1x21x1\lim_{x \to 1} \frac{x^2 - 1}{x - 1}.

Solution: Factor the numerator: limx1(x1)(x+1)x1=limx1(x+1)=2\lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1} (x+1) = 2

Squeeze Theorem (Sandwich Theorem)

Statement: If g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) for all xx in some interval containing cc (except possibly at cc), and if:

limxcg(x)=limxch(x)=L\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L

then limxcf(x)=L\lim_{x \to c} f(x) = L.

Example: Find limx0x2sin(1x)\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right).

Solution: Since 1sin(1x)1-1 \leq \sin\left(\frac{1}{x}\right) \leq 1, we have:

x2x2sin(1x)x2-x^2 \leq x^2 \sin\left(\frac{1}{x}\right) \leq x^2

Since limx0(x2)=0\lim_{x \to 0} (-x^2) = 0 and limx0x2=0\lim_{x \to 0} x^2 = 0, by the Squeeze Theorem:

limx0x2sin(1x)=0\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0

Definition of Continuity

A function f(x)f(x) is continuous at x=cx = c if:

  1. f(c)f(c) exists (function is defined at cc)
  2. limxcf(x)\lim_{x \to c} f(x) exists
  3. limxcf(x)=f(c)\lim_{x \to c} f(x) = f(c)

Equivalently: ff is continuous at cc if:

limxcf(x)=f(c)\lim_{x \to c} f(x) = f(c)

Example: Check if f(x)={x2if x25if x=2f(x) = \begin{cases} x^2 & \text{if } x \neq 2 \\ 5 & \text{if } x = 2 \end{cases} is continuous at x=2x = 2.

Solution:

  • f(2)=5f(2) = 5 ✓ (function is defined)
  • limx2f(x)=limx2x2=4\lim_{x \to 2} f(x) = \lim_{x \to 2} x^2 = 4 ✓ (limit exists)
  • limx2f(x)=45=f(2)\lim_{x \to 2} f(x) = 4 \neq 5 = f(2)

Since the limit doesn't equal the function value, ff is not continuous at x=2x = 2.

Types of Discontinuities

1. Removable Discontinuity (Point Discontinuity):

Occurs when limxcf(x)\lim_{x \to c} f(x) exists but either f(c)f(c) doesn't exist or limxcf(x)f(c)\lim_{x \to c} f(x) \neq f(c).

Example: f(x)=x24x2f(x) = \frac{x^2 - 4}{x - 2} at x=2x = 2.

Here, limx2f(x)=limx2(x2)(x+2)x2=limx2(x+2)=4\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x \to 2} (x+2) = 4, but f(2)f(2) is undefined.

2. Jump Discontinuity:

Occurs when limxcf(x)limxc+f(x)\lim_{x \to c^-} f(x) \neq \lim_{x \to c^+} f(x) (one-sided limits exist but are different).

Example: f(x)={x+1if x<1x+2if x1f(x) = \begin{cases} x + 1 & \text{if } x < 1 \\ x + 2 & \text{if } x \geq 1 \end{cases} at x=1x = 1.

limx1f(x)=2\lim_{x \to 1^-} f(x) = 2 and limx1+f(x)=3\lim_{x \to 1^+} f(x) = 3

3. Infinite Discontinuity:

Occurs when limxcf(x)=±\lim_{x \to c} f(x) = \pm\infty.

Example: f(x)=1x3f(x) = \frac{1}{x-3} at x=3x = 3.

limx3f(x)=\lim_{x \to 3^-} f(x) = -\infty and limx3+f(x)=+\lim_{x \to 3^+} f(x) = +\infty

4. Oscillatory Discontinuity:

Occurs when the function oscillates infinitely as it approaches the point.

Example: f(x)=sin(1x)f(x) = \sin\left(\frac{1}{x}\right) at x=0x = 0.

Continuity on Intervals

Continuous on Open Interval (a, b): ff is continuous at every point in (a,b)(a, b).

Continuous on Closed Interval [a, b]: ff is continuous on (a,b)(a, b) and:

  • limxa+f(x)=f(a)\lim_{x \to a^+} f(x) = f(a) (right-continuous at aa)
  • limxbf(x)=f(b)\lim_{x \to b^-} f(x) = f(b) (left-continuous at bb)

Properties of Continuous Functions:

  • Polynomial functions are continuous everywhere
  • Rational functions are continuous wherever the denominator is non-zero
  • Trigonometric functions are continuous on their domains
  • Exponential and logarithmic functions are continuous on their domains
  • Sum, difference, product, and quotient of continuous functions are continuous (quotient where denominator ≠ 0)
  • Composition of continuous functions is continuous

Important Theorems

Intermediate Value Theorem (IVT):

If ff is continuous on [a,b][a, b] and kk is any value between f(a)f(a) and f(b)f(b), then there exists at least one c[a,b]c \in [a, b] such that f(c)=kf(c) = k.

Application: Proving existence of roots of equations.

Example: Show that f(x)=x3x1f(x) = x^3 - x - 1 has a root in [1,2][1, 2].

Solution: f(1)=1<0f(1) = -1 < 0 and f(2)=5>0f(2) = 5 > 0. Since ff is continuous and 00 lies between 1-1 and 55, by IVT, there exists c[1,2]c \in [1, 2] such that f(c)=0f(c) = 0.

Extreme Value Theorem:

If ff is continuous on [a,b][a, b], then ff attains its maximum and minimum values on [a,b][a, b].

Uniform Continuity:

A function ff is uniformly continuous on an interval if for every ϵ>0\epsilon > 0, there exists δ>0\delta > 0 such that for all x,yx, y in the interval:

xy<δ    f(x)f(y)<ϵ|x - y| < \delta \implies |f(x) - f(y)| < \epsilon

Limits and Continuity of Piecewise Functions

Example: Analyze the continuity of f(x)={x2+1if x<02x+1if x0f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0 \\ 2x + 1 & \text{if } x \geq 0 \end{cases} at x=0x = 0.

Solution:

  • f(0)=2(0)+1=1f(0) = 2(0) + 1 = 1
  • limx0f(x)=limx0(x2+1)=1\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x^2 + 1) = 1
  • limx0+f(x)=limx0+(2x+1)=1\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2x + 1) = 1

Since limx0f(x)=limx0+f(x)=f(0)=1\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) = 1, the function is continuous at x=0x = 0.

General Approach for Piecewise Functions:

  1. Check continuity at boundary points
  2. Verify that left and right limits are equal
  3. Ensure the function value equals the limit
  4. Each piece is continuous on its domain

Practical Problem-Solving Techniques

For Limit Problems:

  1. Direct Substitution: Try substituting the value first
  2. Factoring: Factor and cancel common terms
  3. Rationalization: Multiply by conjugate for radical expressions
  4. L'Hôpital's Rule: For indeterminate forms
  5. Standard Limits: Use known limit formulas
  6. Squeeze Theorem: For oscillating functions

Rationalization Example: Find limx4x2x4\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}.

Solution: Multiply by conjugate:

limx4x2x4x+2x+2=limx4x4(x4)(x+2)=limx41x+2=14\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} + 2} = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}

For Continuity Problems:

  1. Check if the function is defined at the point
  2. Calculate the limit at the point
  3. Compare the limit with the function value
  4. For piecewise functions, check boundary points carefully

Advanced Topics

Limits of Sequences:

For sequences {an}\{a_n\}, we write limnan=L\lim_{n \to \infty} a_n = L if the terms get arbitrarily close to LL as nn increases.

Example: limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0, limnn+1n=1\lim_{n \to \infty} \frac{n+1}{n} = 1

Continuity and Differentiability:

If a function is differentiable at a point, then it is continuous at that point. However, continuity does not imply differentiability.

Example: f(x)=xf(x) = |x| is continuous at x=0x = 0 but not differentiable there.

Limits of Composite Functions:

If limxcg(x)=L\lim_{x \to c} g(x) = L and ff is continuous at LL, then:

limxcf(g(x))=f(L)=f(limxcg(x))\lim_{x \to c} f(g(x)) = f(L) = f\left(\lim_{x \to c} g(x)\right)

Common Mistakes to Avoid

⚠️ Warning - Common Errors:

  • Assuming limit exists: Always check that left and right limits are equal
  • Confusing limit with function value: limxcf(x)\lim_{x \to c} f(x) may not equal f(c)f(c)
  • Incorrect application of L'Hôpital's rule: Only use for indeterminate forms
  • Forgetting domain restrictions: Check where functions are defined
  • Misusing limit properties: Properties only apply when individual limits exist
  • Ignoring one-sided limits: Essential for piecewise functions and absolute values
  • Algebraic errors: Be careful with factoring and simplification

Practice Problems

Problem 1: Find limx3x29x26x+9\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 6x + 9}.

Solution: Factor both numerator and denominator:

limx3(x3)(x+3)(x3)2=limx3x+3x3\lim_{x \to 3} \frac{(x-3)(x+3)}{(x-3)^2} = \lim_{x \to 3} \frac{x+3}{x-3}

As x3x \to 3, numerator approaches 6 and denominator approaches 0, so the limit is ++\infty.

Problem 2: Determine the value of kk that makes f(x)={x24x2if x2kif x=2f(x) = \begin{cases} \frac{x^2-4}{x-2} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} continuous at x=2x = 2.

Solution: For continuity, we need limx2f(x)=f(2)=k\lim_{x \to 2} f(x) = f(2) = k.

limx2x24x2=limx2(x2)(x+2)x2=limx2(x+2)=4\lim_{x \to 2} \frac{x^2-4}{x-2} = \lim_{x \to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x \to 2} (x+2) = 4

Therefore, k=4k = 4.

Problem 3: Evaluate limx0sin5xsin3x\lim_{x \to 0} \frac{\sin 5x}{\sin 3x}.

Solution: Using the standard limit limu0sinuu=1\lim_{u \to 0} \frac{\sin u}{u} = 1:

limx0sin5xsin3x=limx0sin5x5x3xsin3x5x3x=1153=53\lim_{x \to 0} \frac{\sin 5x}{\sin 3x} = \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot \frac{3x}{\sin 3x} \cdot \frac{5x}{3x} = 1 \cdot 1 \cdot \frac{5}{3} = \frac{5}{3}

Suggetested Articles