Complex Number Formulas - Cheatsheet | Last Minute Notes

Hey there! Welcome to KnowledgeKnot! Don't forget to share this with your friends and revisit often. Your support motivates us to create more content in the future. Thanks for being awesome!

Conjugate of a Complex Number: If z=x+iyz = x + iy, then the conjugate z\overline{z} is xiyx - iy.

Example: Let z=3+4iz = 3 + 4i. The conjugate is z=34i\overline{z} = 3 - 4i.

Modulus of a Complex Number: If z=x+iyz = x + iy, then the modulus z|z| is x2+y2\sqrt{x^2 + y^2}.

Example: Let z=3+4iz = 3 + 4i. The modulus is z=32+42=9+16=5|z| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5.

Argument of a Complex Number: If z=x+iyz = x + iy, then the argument θ\theta is given by θ=tan1(yx)\theta = \tan^{-1}\left(\frac{y}{x}\right).

Example: Let z=3+4iz = 3 + 4i. The argument is θ=tan1(43)\theta = \tan^{-1}\left(\frac{4}{3}\right).

Polar Form of a Complex Number: z=r(cosθ+isinθ)z = r(\cos \theta + i \sin \theta), where r=zr = |z| and θ\theta is the argument.

Example: Let z=3+4iz = 3 + 4i. The polar form is z=5(cos(tan143)+isin(tan143))z = 5(\cos(\tan^{-1}\frac{4}{3}) + i \sin(\tan^{-1}\frac{4}{3})).

Multiplication of Complex Numbers in Polar Form:
If z1=r1(cosθ1+isinθ1)z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) and z2=r2(cosθ2+isinθ2)z_2 = r_2 (\cos \theta_2 + i \sin \theta_2),
z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z_1 z_2 = r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)\right].

Example: Let z1=2(cosπ4+isinπ4)z_1 = 2(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) and z2=3(cosπ6+isinπ6)z_2 = 3(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}). Then z1z2=6(cos(π4+π6)+isin(π4+π6))z_1 z_2 = 6(\cos \left(\frac{\pi}{4} + \frac{\pi}{6}\right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{6}\right)).

De Moivre's Theorem

For any integer nn,
(r(cosθ+isinθ))n=rn(cos(nθ)+isin(nθ))(r(\cos \theta + i \sin \theta))^n = r^n (\cos(n \theta) + i \sin(n \theta)).

Example Question

Question: Use De Moivre's Theorem to find (1+i)4(1 + i)^4.

Solution:
Step 1: Express 1+i1 + i in polar form.
z=1+iz = 1 + i can be written as r(cosθ+isinθ)r(\cos \theta + i \sin \theta), where r=zr = |z| and θ=arg(z)\theta = \arg(z).
Calculate rr:
r=12+12=2r = \sqrt{1^2 + 1^2} = \sqrt{2}.
Calculate θ\theta:
θ=tan1(11)=π4\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}.
Therefore, 1+i=2(cos(π4)+isin(π4))1 + i = \sqrt{2} \left( \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right).

Step 2: Apply De Moivre's Theorem with r=2r = \sqrt{2}, θ=π4\theta = \frac{\pi}{4}, and n=4n = 4.
(1+i)4=(2(cos(π4)+isin(π4)))4(1 + i)^4 = \left(\sqrt{2} \left( \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right)\right)^4.

Step 3: Calculate the magnitude and argument.
(2)4=4(\sqrt{2})^4 = 4.
4(cos(4π4)+isin(4π4))4 \left( \cos\left(4 \cdot \frac{\pi}{4}\right) + i \sin\left(4 \cdot \frac{\pi}{4}\right) \right).

Step 4: Simplify the argument.
4(cos(π)+isin(π))4 \left( \cos(\pi) + i \sin(\pi) \right).
4(1+0i)=44 \left( -1 + 0i \right) = -4.

Therefore, (1+i)4=4(1 + i)^4 = -4.

Cube Roots of Unity

The cube roots of unity are 1,ω,ω21, \omega, \omega^2, where ω=12+i32\omega = -\frac{1}{2} + i \frac{\sqrt{3}}{2} and ω2=12i32\omega^2 = -\frac{1}{2} - i \frac{\sqrt{3}}{2}.

Example: Consider the cube roots of unity. Verify the value of ω\omega:

ω=12+i32\omega = -\frac{1}{2} + i \frac{\sqrt{3}}{2}
Compute ω3\omega^3:
ω3=(12+i32)3\omega^3 = \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^3
This simplifies to 11.

Properties of Cube Roots of Unity:

  • 1+ω+ω2=01 + \omega + \omega^2 = 0
  • ω3=1\omega^3 = 1
  • ω2ω=ω3=1\omega^2 \cdot \omega = \omega^3 = 1

Example: Verify the property 1+ω+ω2=01 + \omega + \omega^2 = 0:

Substitute the values:
1+(12+i32)+(12i32)1 + \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)
Simplify:
11212+i32i321 - \frac{1}{2} - \frac{1}{2} + i \frac{\sqrt{3}}{2} - i \frac{\sqrt{3}}{2}
This results in:
00.

Trigonometric Identities involving Complex Numbers

Sum of Angles:
cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B
sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B.

Double Angle Formulas:
cos(2A)=cos2Asin2A\cos(2A) = \cos^2 A - \sin^2 A
sin(2A)=2sinAcosA\sin(2A) = 2 \sin A \cos A.

Triple Angle Formulas:
cos(3A)=4cos3A3cosA\cos(3A) = 4\cos^3 A - 3\cos A
sin(3A)=3sinA4sin3A\sin(3A) = 3\sin A - 4\sin^3 A.

Example Question

Question: Verify the identity cos(3A)=4cos3A3cosA\cos(3A) = 4\cos^3 A - 3\cos A using De Moivre's Theorem.

Solution:
Step 1: Express z=cosA+isinAz = \cos A + i \sin A in exponential form using Euler's formula:
z=eiAz = e^{iA}.

Step 2: Use De Moivre's Theorem to find z3z^3:
z3=(eiA)3=ei(3A)z^3 = (e^{iA})^3 = e^{i(3A)}.

Step 3: Convert back to trigonometric form:
ei(3A)=cos(3A)+isin(3A)e^{i(3A)} = \cos(3A) + i \sin(3A).

Step 4: Expand z3z^3 using binomial expansion:
z3=(cosA+isinA)3z^3 = (\cos A + i \sin A)^3
=cos3A+3icos2AsinA3cosAsin2Aisin3A= \cos^3 A + 3i \cos^2 A \sin A - 3 \cos A \sin^2 A - i \sin^3 A
=(cos3A3cosAsin2A)+i(3cos2AsinAsin3A)= (\cos^3 A - 3 \cos A \sin^2 A) + i (3 \cos^2 A \sin A - \sin^3 A).

Step 5: Equate the real parts:
cos(3A)=cos3A3cosAsin2A\cos(3A) = \cos^3 A - 3 \cos A \sin^2 A.
Using the Pythagorean identity sin2A=1cos2A\sin^2 A = 1 - \cos^2 A:
cos(3A)=cos3A3cosA(1cos2A)\cos(3A) = \cos^3 A - 3 \cos A (1 - \cos^2 A)
=cos3A3cosA+3cos3A= \cos^3 A - 3 \cos A + 3 \cos^3 A
=4cos3A3cosA= 4 \cos^3 A - 3 \cos A.

Therefore, the identity cos(3A)=4cos3A3cosA\cos(3A) = 4 \cos^3 A - 3 \cos A is verified.

Suggetested Articles