Complex Number Formulas - Cheatsheet | Last Minute Notes

Hey there! Welcome to KnowledgeKnot! Don't forget to share this with your friends and revisit often. Your support motivates us to create more content in the future. Thanks for being awesome!

Introduction to Complex Numbers

Complex numbers are an extension of the real number system and play a crucial role in various branches of mathematics and engineering. They are numbers of the form z=a+biz = a + bi, where aa and bb are real numbers, and ii is the imaginary unit defined as i2=1i^2 = -1. The real part (aa) represents the number's horizontal component, while the imaginary part (bb) represents its vertical component. Complex numbers provide a comprehensive framework for solving equations that have no solutions within the set of real numbers, such as x2+1=0x^2 + 1 = 0.

Alzebra of Complex Number

Algebra of complex numbers deals with the basic operations that can be performed on complex numbers. A complex number is a number of the form a+bia + bi, where aa is the real part, and bibi is the imaginary part, with bb being the imaginary coefficient and ii being the imaginary unit such that i2=1i ^ 2 = -1.

The algebra of complex numbers involves several operations:

Addition

To add two complex numbers z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di, add the real parts and the imaginary parts separately:

z1+z2=(a+c)+(b+d)iz_1 + z_2 = (a + c) + (b + d)i

Subtraction

To subtract two complex numbers z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di, subtract the real parts and the imaginary parts separately:

z1z2=(ac)+(bd)iz_1 - z_2 = (a - c) + (b - d)i

Multiplication

To multiply two complex numbers z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di, use the distributive property and simplify:

z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2z_1 \cdot z_2 = (a + bi)(c + di) = ac + adi + bci + bdi^2

Since i2=1i ^ 2 = -1, this simplifies to:

z1z2=(acbd)+(ad+bc)iz_1 \cdot z_2 = (ac - bd) + (ad + bc)i

Division

To divide two complex numbers z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di, multiply the numerator and denominator by the conjugate of z2z_2:

z1/z2=a+bic+dicdicdiz_1 / z_2 = \frac{a + bi}{c + di} \cdot \frac{c - di}{c - di}

Simplify the result:

z1/z2=(a+bi)(cdi)(c+di)(cdi)=(ac+bd)+(bcad)ic2+d2z_1 / z_2 = \frac{(a + bi)(c - di)}{(c + di)(c - di)} = \frac{(ac + bd) + (bc - ad)i}{c^2 + d^2}

Therefore, the division of two complex numbers is given by:

z1/z2=ac+bdc2+d2+bcadc2+d2iz_1 / z_2 = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i

Conjugate of a Complex Number

The conjugate of a complex number is obtained by changing the sign of the imaginary part while keeping the real part unchanged. If z=x+iyz = x + iy, then the conjugate is denoted as z\overline{z}, and is given by:

z=xiy\overline{z} = x - iy.

The complex conjugate plays a significant role in simplifying expressions involving complex numbers and in calculating the modulus. It is also useful when performing division involving complex numbers.

Properties of Complex Conjugates

  • z1+z2=z1+z2\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}: The conjugate of the sum of two complex numbers is equal to the sum of their conjugates.
  • z1z2=z1z2\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}: The conjugate of the product of two complex numbers is equal to the product of their conjugates.
  • z=z\overline{\overline{z}} = z: The conjugate of the conjugate of a complex number is the number itself.
  • z1z2=z1z2\overline{\frac{z_1}{z_2}} = \frac{\overline{z_1}}{\overline{z_2}}: The conjugate of the quotient of two complex numbers is equal to the quotient of their conjugates.
  • z=z|\overline{z}| = |z|: The modulus (or absolute value) of a complex number and its conjugate are equal.

Modulus of a Complex Number

The modulus of a complex number is the distance of the number from the origin in the complex plane. If z=x+iyz = x + iy, then the modulus z|z| is calculated as:

z=x2+y2|z| = \sqrt{x^2 + y^2}.

This is essentially the length of the vector that represents the complex number in the complex plane. The modulus is important in many operations, such as dividing complex numbers and converting to polar form.

Example: Let z=3+4iz = 3 + 4i. The modulus is calculated as:

z=32+42=9+16=5|z| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5.

Properties of Modulus

  1. z2=zz|z|^2 = z\overline{z} - The square of the modulus equals the product of a complex number and its conjugate
  2. z=0    z=0|z| = 0 \iff z = 0 - The modulus is zero if and only if the complex number is zero
  3. 1z=zz2\frac{1}{z} = \frac{\overline{z}}{|z|^2} if z0z \neq 0 - Reciprocal property
  4. z1z2=z1z2|z_1z_2| = |z_1||z_2| - The modulus of a product equals the product of the moduli
  5. z1z2=z1z2|\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|} if z20z_2 \neq 0 - The modulus of a quotient equals the quotient of the moduli
  6. zzz-|z| \leq z \leq |z| - Bounds property
  7. z1+z22=z12+z22+z1z2+z1z2|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + z_1\overline{z_2} + \overline{z_1}z_2
    =z12+z22+2(z1z2)= |z_1|^2 + |z_2|^2 + 2\Re(z_1\overline{z_2}) - Squared sum property

Note: These properties are fundamental in complex analysis and are frequently used in solving problems involving complex numbers.

Example Questions - Conjugate and Modulus of Complex Number

Question 1:
Let Z=x+iyZ = x + iy and ω=1iZZ1\omega = \frac{1-iZ}{Z-1}. If ω=1|\omega| = 1, show that Z is purely real.

Solution:
Let Z=x+iyZ = x + iy
ω=1|\omega| = 1
ω2=1\Rightarrow |\omega|^2 = 1
ωω=1\Rightarrow \omega \cdot \overline{\omega} = 1
ω=1iZZ1\omega = \frac{1 - iZ}{Z - 1}
ω=1iZZ1=1+iZZ1\overline{\omega} = \frac{\overline{1 - iZ}}{\overline{Z - 1}} = \frac{1 + i\overline{Z}}{\overline{Z} - 1}
1iZZ11+iZZ1=1\Rightarrow \frac{1 - iZ}{Z - 1} \cdot \frac{1 + i\overline{Z}}{\overline{Z} - 1} = 1
(1iZ)(1+iZ)(Z1)(Z1)=1\Rightarrow \frac{(1 - iZ)(1 + i\overline{Z})}{(Z - 1)(\overline{Z} - 1)} = 1
Numerator: (1iZ)(1+iZ)=1ZZ(1 - iZ)(1 + i\overline{Z}) = 1 - Z\overline{Z}
Denominator: (Z1)(Z1)=Z12(Z - 1)(\overline{Z} - 1) = |Z - 1|^2
1ZZZ12=1\Rightarrow \frac{1 - Z\overline{Z}}{|Z - 1|^2} = 1
1ZZ=Z12\Rightarrow 1 - Z\overline{Z} = |Z - 1|^2
1(x2+y2)=(x1)2+y2\Rightarrow 1 - (x^2 + y^2) = (x - 1)^2 + y^2
Expand: 1x2y2=x22x+1+y21 - x^2 - y^2 = x^2 - 2x + 1 + y^2
0=2x2\Rightarrow 0 = 2x - 2
x=1\Rightarrow x = 1
Substitute x=1x = 1: y2=0y^2 = 0
Z=x\therefore Z = x, Z is purely real.

Question 2:
If Z=1|Z| = 1, Z1Z \neq -1, show that Z1Z+1\frac{Z-1}{Z+1} is purely imaginary.

Solution:
Let Z=x+iyZ = x + iy
Z=1|Z| = 1
x2+y2=1\Rightarrow x^2 + y^2 = 1
Z1Z+1=a+ib\frac{Z-1}{Z+1} = a + ib
(Z1)=(a+ib)(Z+1)\Rightarrow (Z-1) = (a + ib)(Z + 1)
Substitute Z=x+iyZ = x + iy:
(x1+iy)=(a+ib)(x+1+iy)(x - 1 + iy) = (a + ib)(x + 1 + iy)
Expand:
(x1)+iy=ax+a+iby+ib(x - 1) + iy = ax + a + iby + ib
Separate real and imaginary parts:
Real: x1=ax+abyx - 1 = ax + a - by
Imaginary: y=ay+bx+by = ay + bx + b
Solve for aa:
a=0a = 0
Z1Z+1\therefore \frac{Z-1}{Z+1} is purely imaginary.

Question 3:
If zi=z+i|z - i| = |z + i|, show that (z)=0\Im(z) = 0.

Solution:
Let z=x+iyz = x + iy
zi=z+i|z - i| = |z + i|
x+i(y1)=x+i(y+1)\Rightarrow |x + i(y - 1)| = |x + i(y + 1)|
Squaring both sides:
x2+(y1)2=x2+(y+1)2x^2 + (y - 1)^2 = x^2 + (y + 1)^2
Expand:
x2+y22y+1=x2+y2+2y+1x^2 + y^2 - 2y + 1 = x^2 + y^2 + 2y + 1
Cancel terms:
2y=2y-2y = 2y
y=0\Rightarrow y = 0
(z)=0\therefore \Im(z) = 0.

Question 4:
If (a+bi)(3+i)=(1+i)(2+i)(a + bi)(3 + i) = (1 + i)(2 + i), find a and b.

Solution:
Expand right-hand side:
(1+i)(2+i)=2+i+2i+i2=1+3i(1 + i)(2 + i) = 2 + i + 2i + i^2 = 1 + 3i
Expand left-hand side:
(a+bi)(3+i)=3a+ai+3bi+bi2=(3ab)+(a+3b)i(a + bi)(3 + i) = 3a + ai + 3bi + bi^2 = (3a - b) + (a + 3b)i
Compare real and imaginary parts:
Real: 3ab=13a - b = 1
Imaginary: a+3b=3a + 3b = 3
Solve the system of equations:
a=1,b=2a = 1, b = 2.

Question 5:
If (cosθ+isinθ)2=x+iy(\cos \theta + i \sin \theta)^2 = x + iy, show that x2+y2=1x^2 + y^2 = 1.

Solution:
Apply De Moivre’s theorem:
(cosθ+isinθ)2=cos2θ+isin2θ(\cos \theta + i \sin \theta)^2 = \cos 2\theta + i \sin 2\theta
x=cos2θx = \cos 2\theta, y=sin2θy = \sin 2\theta
Use trigonometric identity:
cos22θ+sin22θ=1\cos^2 2\theta + \sin^2 2\theta = 1
x2+y2=1\Rightarrow x^2 + y^2 = 1.

Argument of a Complex Number

The argument of a complex number represents the angle between the positive real axis and the line representing the complex number in the complex plane. If z=x+iyz = x + iy, the argument θ\theta is given by:

θ=tan1(yx)\theta = \tan^{-1}\left(\frac{y}{x}\right).

The argument is measured in radians, and it is important for converting complex numbers to polar form and performing various operations such as multiplication and division.

Example: Let z=3+4iz = 3 + 4i. The argument is:

θ=tan1(43)\theta = \tan^{-1}\left(\frac{4}{3}\right).

Polar Form of a Complex Number

The polar form of a complex number expresses it in terms of its modulus and argument. If z=x+iyz = x + iy, then the polar form is given by:

z=r(cosθ+isinθ)z = r(\cos \theta + i \sin \theta), where r=zr = |z| and θ\theta is the argument.

The polar form is especially useful for multiplying and dividing complex numbers, as well as raising them to powers.

Example: Let z=3+4iz = 3 + 4i. First, calculate the modulus r=5r = 5 and the argument θ=tan1(43)\theta = \tan^{-1}\left(\frac{4}{3}\right). The polar form is then:

z=5(cos(tan143)+isin(tan143))z = 5(\cos(\tan^{-1}\frac{4}{3}) + i \sin(\tan^{-1}\frac{4}{3})).

Multiplication of Complex Numbers in Polar Form

Multiplying complex numbers in polar form involves multiplying their magnitudes and adding their arguments. If z1=r1(cosθ1+isinθ1)z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) and z2=r2(cosθ2+isinθ2)z_2 = r_2 (\cos \theta_2 + i \sin \theta_2), then their product is:

z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z_1 z_2 = r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)\right].

This formula allows us to quickly multiply complex numbers when they are in polar form, avoiding the need to multiply and simplify their real and imaginary parts separately.

Example: Let z1=2(cosπ4+isinπ4)z_1 = 2(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) and z2=3(cosπ6+isinπ6)z_2 = 3(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}). Then the product is:

z1z2=6(cos(π4+π6)+isin(π4+π6))z_1 z_2 = 6(\cos \left(\frac{\pi}{4} + \frac{\pi}{6}\right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{6}\right)).

De Moivre's Theorem

For any integer nn,
(r(cosθ+isinθ))n=rn(cos(nθ)+isin(nθ))(r(\cos \theta + i \sin \theta))^n = r^n (\cos(n \theta) + i \sin(n \theta)).

Example Question

Question: Use De Moivre's Theorem to find (1+i)4(1 + i)^4.

Solution:
Step 1: Express 1+i1 + i in polar form.
z=1+iz = 1 + i can be written as r(cosθ+isinθ)r(\cos \theta + i \sin \theta), where r=zr = |z| and θ=arg(z)\theta = \arg(z).
Calculate rr:
r=12+12=2r = \sqrt{1^2 + 1^2} = \sqrt{2}.
Calculate θ\theta:
θ=tan1(11)=π4\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}.
Therefore, 1+i=2(cos(π4)+isin(π4))1 + i = \sqrt{2} \left( \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right).

Step 2: Apply De Moivre's Theorem with r=2r = \sqrt{2}, θ=π4\theta = \frac{\pi}{4}, and n=4n = 4.
(1+i)4=(2(cos(π4)+isin(π4)))4(1 + i)^4 = \left(\sqrt{2} \left( \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right)\right)^4.

Step 3: Calculate the magnitude and argument.
(2)4=4(\sqrt{2})^4 = 4.
4(cos(4π4)+isin(4π4))4 \left( \cos\left(4 \cdot \frac{\pi}{4}\right) + i \sin\left(4 \cdot \frac{\pi}{4}\right) \right).

Step 4: Simplify the argument.
4(cos(π)+isin(π))4 \left( \cos(\pi) + i \sin(\pi) \right).
4(1+0i)=44 \left( -1 + 0i \right) = -4.

Therefore, (1+i)4=4(1 + i)^4 = -4.

Cube Roots of Unity

The cube roots of unity are the three solutions to the equation x3=1x^3 = 1. These roots are:

1,ω,ω21, \omega, \omega^2, where:ω=12+i32\omega = -\frac{1}{2} + i \frac{\sqrt{3}}{2} andω2=12i32\omega^2 = -\frac{1}{2} - i \frac{\sqrt{3}}{2}.

These are the cube roots of unity, where 11 is the real cube root, and ω\omega and ω2\omega^2 are the complex cube roots.

Example: Consider the cube root ω\omega. Verify the value of ω\omega:

ω=12+i32\omega = -\frac{1}{2} + i \frac{\sqrt{3}}{2}
Compute ω3\omega^3:
ω3=(12+i32)3\omega^3 = \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^3
Expanding this expression, we simplify it to 11.

This verifies that ω3=1\omega^3 = 1, meaning ω\omega is indeed a cube root of unity.

Properties of Cube Roots of Unity:

  • 1+ω+ω2=01 + \omega + \omega^2 = 0: This property holds because the sum of the cube roots of unity is zero. These roots form an equilateral triangle in the complex plane, and their sum lies at the origin.
  • ω3=1\omega^3 = 1: This is the fundamental property of the cube roots of unity. Any power of ω\omega that is a multiple of 3 will be 1, i.e., ω3=1\omega^3 = 1, ω6=1\omega^6 = 1, and so on.
  • ω2ω=ω3=1\omega^2 \cdot \omega = \omega^3 = 1: This shows that multiplying any cube root of unity by another gives 1, as ω2ω=1\omega^2 \cdot \omega = 1.

Example: Verify the property 1+ω+ω2=01 + \omega + \omega^2 = 0:

Substitute the values of 11, ω\omega, and ω2\omega^2 into the equation:

1+(12+i32)+(12i32)1 + \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)
Simplify the expression:
11212+i32i321 - \frac{1}{2} - \frac{1}{2} + i \frac{\sqrt{3}}{2} - i \frac{\sqrt{3}}{2}
This simplifies to:
00.

This verifies that 1+ω+ω2=01 + \omega + \omega^2 = 0 is true.

Additional Properties: Cube roots of unity also satisfy the following properties:

  • ω2=ω\omega^2 = \overline{\omega}: The complex conjugate of ω\omega is ω2\omega^2.
  • 1+ω+ω2=01 + \omega + \omega^2 = 0: As mentioned earlier, this is a fundamental identity and is often used in various proofs and factorizations.

Trigonometric Identities involving Complex Numbers

Sum of Angles:
cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B
sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B.

Double Angle Formulas:
cos(2A)=cos2Asin2A\cos(2A) = \cos^2 A - \sin^2 A
sin(2A)=2sinAcosA\sin(2A) = 2 \sin A \cos A.

Triple Angle Formulas:
cos(3A)=4cos3A3cosA\cos(3A) = 4\cos^3 A - 3\cos A
sin(3A)=3sinA4sin3A\sin(3A) = 3\sin A - 4\sin^3 A.

Example Question

Question: Verify the identity cos(3A)=4cos3A3cosA\cos(3A) = 4\cos^3 A - 3\cos A using De Moivre's Theorem.

Solution:
Step 1: Express z=cosA+isinAz = \cos A + i \sin A in exponential form using Euler's formula:
z=eiAz = e^{iA}.

Step 2: Use De Moivre's Theorem to find z3z^3:
z3=(eiA)3=ei(3A)z^3 = (e^{iA})^3 = e^{i(3A)}.

Step 3: Convert back to trigonometric form:
ei(3A)=cos(3A)+isin(3A)e^{i(3A)} = \cos(3A) + i \sin(3A).

Step 4: Expand z3z^3 using binomial expansion:
z3=(cosA+isinA)3z^3 = (\cos A + i \sin A)^3
=cos3A+3icos2AsinA3cosAsin2Aisin3A= \cos^3 A + 3i \cos^2 A \sin A - 3 \cos A \sin^2 A - i \sin^3 A
=(cos3A3cosAsin2A)+i(3cos2AsinAsin3A)= (\cos^3 A - 3 \cos A \sin^2 A) + i (3 \cos^2 A \sin A - \sin^3 A).

Step 5: Equate the real parts:
cos(3A)=cos3A3cosAsin2A\cos(3A) = \cos^3 A - 3 \cos A \sin^2 A.
Using the Pythagorean identity sin2A=1cos2A\sin^2 A = 1 - \cos^2 A:
cos(3A)=cos3A3cosA(1cos2A)\cos(3A) = \cos^3 A - 3 \cos A (1 - \cos^2 A)
=cos3A3cosA+3cos3A= \cos^3 A - 3 \cos A + 3 \cos^3 A
=4cos3A3cosA= 4 \cos^3 A - 3 \cos A.

Therefore, the identity cos(3A)=4cos3A3cosA\cos(3A) = 4 \cos^3 A - 3 \cos A is verified.

Suggetested Articles